Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p...Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.展开更多
Taking I-Magic Cube - the entry of Shandong Jianzhu University for Solar Decathlon 2013 - for example, the paper analyzes the conceptual, technological, functional and aesthetic solutions of zero energy solar house co...Taking I-Magic Cube - the entry of Shandong Jianzhu University for Solar Decathlon 2013 - for example, the paper analyzes the conceptual, technological, functional and aesthetic solutions of zero energy solar house coping with ecological, economic, social and cultural challenges. Passive strategies, the solar thermal and PV system, and the building integrated solar system tactics are elaborated. Finally, industrialization and marketing viability of the solar house prototypes are discussed.展开更多
MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite i...MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite its various desirable properties including intrinsic flexibility,high specific surface area,excellent metallic conductivity and unique abundance of surface functionalities,its full potential for electrochemical performance is hindered by the notorious restacking phenomenon of MXene nanosheets.Ascribed to its two-dimensional(2D)nature and surface functional groups,inevitable Van der Waals interactions drive the agglomeration of nanosheets,ultimately reducing the exposure of electrochemically active sites to the electrolyte,as well as severely lengthening electrolyte ion transport pathways.As a result,energy and power density deteriorate,limiting the application versatility of MXene-based supercapacitors.Constructing 3D architectures using 2D nanosheets presents as a straightforward yet ingenious approach to mitigate the fatal flaws of MXene.However,the sheer number of distinct methodologies reported,thus far,calls for a systematic review that unravels the rationale behind such 3D MXene structural designs.Herein,this review aims to serve this purpose while also scrutinizing the structure–property relationship to correlate such structural modifications to their ensuing electrochemical performance enhancements.Besides,the physicochemical properties of MXene play fundamental roles in determining the effective charge storage capabilities of 3D MXene-based electrodes.This largely depends on different MXene synthesis techniques and synthesis condition variations,hence,elucidated in this review as well.Lastly,the challenges and perspectives for achieving viable commercialization of MXene-based supercapacitor electrodes are highlighted.展开更多
In a context of growing efforts to develop sustainability strategies, energy-related issues occupy central stage in the built environment. Thus, the energy performance of housings has improved radically over the past ...In a context of growing efforts to develop sustainability strategies, energy-related issues occupy central stage in the built environment. Thus, the energy performance of housings has improved radically over the past decades. Yet other types of buildings, in particular commercial centers, haven’t received the same level of interest. As a result, there is a need for effective and practical measures to decrease their energy consumption, both for heating and electricity. The objective of the paper is to demonstrate that it is possible, through coherent strategies, to integrate energy issues and bioclimatic principles into the design process of commercial centers. It analyzes the exemplary case study of Marin Commercial Center (Switzerland). The interdisciplinary approach, based on integrated design strategies, aimed at increasing the energy efficiency while keeping the cost comparable to the market cost. The main design principles include natural ventilation, nighttime cooling with energy recovery and natural lighting, as well as optimization of mechanical systems. The results of the simulations show that Marin Center attains the best energy performance observed so far among Swiss commercial centers. It also meets the Swiss Minergie standard. The paper thus questions traditional design processes and outlines the need for interdisciplinary evaluation and monitoring approaches tailored for commercial centers. Even though most crucial decisions are taken during the early stages, all phases of the process require systematic optimization strategies, especially operating stages. Recommendations include legal measures, in particular in the fields of ventilation and air-conditioning, education, professional development and technology transfer, and financial incentives for the replacement of energy intensive installations.展开更多
Taking the planning and major architectural design projects of Anqing Children Welfare Home for example,through the research on categories and each component of solar water heating system,the paper discussed strategie...Taking the planning and major architectural design projects of Anqing Children Welfare Home for example,through the research on categories and each component of solar water heating system,the paper discussed strategies and methods to realize solar energy and architectural integration design in the climate condition and location environment of Anhui Province.展开更多
The development of a sustainable energy system throughout an enterprise is a complex task, which requires an agile holistic approach. Such an approach needs to include a variety of objectives including energy strategy...The development of a sustainable energy system throughout an enterprise is a complex task, which requires an agile holistic approach. Such an approach needs to include a variety of objectives including energy strategy formation and strategic decision-making, which are directly related to the analysis and management of the main areas of sustainable development: The economic, technological, environmental, and social. These multidimensional requirements of sustainability are often difficult to achieve within the enterprise, because these aspects are interrelated and influenced by various internal and external environment factors. This paper first reviews the main challenges for an energy system, and then demonstrates how a strategic agile enterprise architecture driven approach could effectively guide the sustainable energy system development. The study presented in this paper provides a holistic approach that contributes to the advancement and usage of literature dealing with issues of sustainable energy system development and agile enterprise architecture, which has not been discussed before to any great extent.展开更多
According to the high operating costs and a large number of energy waste in the current data center network architectures, we propose a kind of trusted flow preemption scheduling combining the energy-saving routing me...According to the high operating costs and a large number of energy waste in the current data center network architectures, we propose a kind of trusted flow preemption scheduling combining the energy-saving routing mechanism based on typical data center network architecture. The mechanism can make the network flow in its exclusive network link bandwidth and transmission path, which can improve the link utilization and the use of the network energy efficiency. Meanwhile, we apply trusted computing to guarantee the high security, high performance and high fault-tolerant routing forwarding service, which helps improving the average completion time of network flow.展开更多
The development of society and economy in China is bringing growth to all industries. In particular, the development of China’s building industry has attracted much attention. Building materials are an important part...The development of society and economy in China is bringing growth to all industries. In particular, the development of China’s building industry has attracted much attention. Building materials are an important part of and widely used in the building industry. Energy conservation by building materials has become an inevitable way of sustainable development. Centering on the building industry, this paper mainly discusses in detail the energy conservation ways by ecological architecture and building materials.展开更多
In the new architectural configurations, energy efficiency and savings, are shown mainly by technological development, in the growing field of IT (Information Technology), integrated into the new design concept with...In the new architectural configurations, energy efficiency and savings, are shown mainly by technological development, in the growing field of IT (Information Technology), integrated into the new design concept with intelligent efficiency. The objective is to adopt innovative digital technological systems, with intelligent materials that interact in the new design process and product with the computational designer for buildings which meet the needs of users and optimize efficient spaces. Innovation and energy technology are sharper focus, in tall buildings, office buildings, commercial buildings, hospitals, etc. with adoption of high-performance sensitive technological systems. The methodology is to install efficient buildings, systems with innovative digital devices that interface with the user and the central control system of building automation through Z-wave wireless networks and sensors of BIoT (Building the Internet of Things). So deep energy strategies with flexible and coordinated integrated management for climate control, distribution of electricity from renewable sources, for high-performance digital sensitive architectures, also as a response to climate change at COP 21 in Paris. Thus reducing costs with self-management of smartphones, tablets, and engineering of sustainable materials, nanostructured, to increase thermal insulation performance, mechanical, energy sensitive develops contextualized in the redevelopment of the building.展开更多
The fast acceptance of cloud technology to industry explains increasing energy conservation needs and adoption of energy aware scheduling methods to cloud. Power consumption is one of the top of mind issues in cloud, ...The fast acceptance of cloud technology to industry explains increasing energy conservation needs and adoption of energy aware scheduling methods to cloud. Power consumption is one of the top of mind issues in cloud, because the usage of cloud storage by the individuals or organization grows rapidly. Developing an efficient power management processor architecture has gained considerable attention. However, the conventional power management mechanism fails to consider task scheduling policies. Therefore, this work presents a novel energy aware framework for power management. The proposed system leads to the development of Inclusive Power-Cognizant Processor Controller (IPCPC) for efficient power utilization. To evaluate the performance of the proposed method, simulation experiments inputting random tasks as well as tasks collected from Google Trace Logs were conducted to validate the supremacy of IPCPC. The research based on Real world Google Trace Logs gives results that proposed framework leads to less than 9% of total power consumption per task of server which proves reduction in the overall power needed.展开更多
Compared with the flat architecture in the design of sensor networks, the hierarchical architecture gains much attractive for the reason of scalability, management and energy efficiency. In order to distribute the ene...Compared with the flat architecture in the design of sensor networks, the hierarchical architecture gains much attractive for the reason of scalability, management and energy efficiency. In order to distribute the energy evenly, nodes act the cluster head in some orders. The existing approaches don’t pay a critical attention to the overhead during the role rotations. And the duration of a round is a priori, which is very application-specific. An energy-aware hierarchical architecture design scheme is put forward in this paper, namely, Adaptive Minimum Rotational Cost (AMRC) cluster formation scheme. The decision of beginning a new round is made adaptively by the cluster head itself. It combines the dynamic and static advantages in the clustering architecture. The simulation results demonstrate AMRC outperforms some other clustering protocols in many aspects.展开更多
With the rapid development of the economy,the scale of construction projects in China is gradually expanding.In terms of construction technology,continuous innovation is being made to meet the needs of sustainable dev...With the rapid development of the economy,the scale of construction projects in China is gradually expanding.In terms of construction technology,continuous innovation is being made to meet the needs of sustainable development strategies,and green energy conservation technologies have emerged.It has a brand new design concept,and advocates for maximum energy conservation and environmental protection,fundamentally promoting the rational use of resources and space,and preventing the expansion of air and land pollution.First of all,a brief explanation is given on the current development status of green energy conservation technology in this paper.Secondly,through the introduction and analysis of energy conservation technologies and related building cases,the in-depth research on energy conservation measures of buildings is conducted.Finally,the prospects of green energy conservation technologies are proposed based on the current development status in China.This paper has certain reference value for its related engineering and theoretical research.展开更多
Energy demand will continue to rise as a result of predicted population growth. In this work, a user-friendly home energy monitoring system based on IoT is described, which is capable of collecting, analyzing, and dis...Energy demand will continue to rise as a result of predicted population growth. In this work, a user-friendly home energy monitoring system based on IoT is described, which is capable of collecting, analyzing, and displaying data. Users register their sensors and devices on the monitoring platform. PostgreSQL and Elasticsearch databases are used to store the resulting measurements. In a smart home, the wireless sensor ACS712 was used to monitor the flow of electricity (current and voltage) for a household device. The user can share data about electricity consumption and costs with a third party via the private IPFS (InterPlanetary File System) network. A third party can download all the energy consumption data for a device or many devices from the platform for 1 day, 3 months, 6 months, and 1 year. The studies on the development of energy-efficient technology for home devices benefit greatly from the gathered data. For security in the system, it is preferred to run Keyrock Idm, Wilma Pep Proxy, and Orion Context Broker in HTTPS mode, and MQTTS is used to retrieve sensor data. The experimental results showed that the energy monitoring system accurately records voltage, current, active power, and the total amount of power used and offers low-cost solutions to the users using household devices in a day.展开更多
基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110762Research Grants Council of the Hong Kong Special Administrative Region,China,Grant/Award Number:R6005‐20Shenzhen Key Laboratory of Advanced Energy Storage,Grant/Award Number:ZDSYS20220401141000001。
文摘Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.
文摘Taking I-Magic Cube - the entry of Shandong Jianzhu University for Solar Decathlon 2013 - for example, the paper analyzes the conceptual, technological, functional and aesthetic solutions of zero energy solar house coping with ecological, economic, social and cultural challenges. Passive strategies, the solar thermal and PV system, and the building integrated solar system tactics are elaborated. Finally, industrialization and marketing viability of the solar house prototypes are discussed.
基金supported by the Fundamental Research Grant Scheme by Ministry of Higher Education Malaysia(FRGS/1/2021/STG04/XMU/02/1 and FRGS/1/2022/TK09/XMU/03/2)the Xiamen University Malaysia Research Fund(XMUMRF/2023-C11/IENG/0056)。
文摘MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite its various desirable properties including intrinsic flexibility,high specific surface area,excellent metallic conductivity and unique abundance of surface functionalities,its full potential for electrochemical performance is hindered by the notorious restacking phenomenon of MXene nanosheets.Ascribed to its two-dimensional(2D)nature and surface functional groups,inevitable Van der Waals interactions drive the agglomeration of nanosheets,ultimately reducing the exposure of electrochemically active sites to the electrolyte,as well as severely lengthening electrolyte ion transport pathways.As a result,energy and power density deteriorate,limiting the application versatility of MXene-based supercapacitors.Constructing 3D architectures using 2D nanosheets presents as a straightforward yet ingenious approach to mitigate the fatal flaws of MXene.However,the sheer number of distinct methodologies reported,thus far,calls for a systematic review that unravels the rationale behind such 3D MXene structural designs.Herein,this review aims to serve this purpose while also scrutinizing the structure–property relationship to correlate such structural modifications to their ensuing electrochemical performance enhancements.Besides,the physicochemical properties of MXene play fundamental roles in determining the effective charge storage capabilities of 3D MXene-based electrodes.This largely depends on different MXene synthesis techniques and synthesis condition variations,hence,elucidated in this review as well.Lastly,the challenges and perspectives for achieving viable commercialization of MXene-based supercapacitor electrodes are highlighted.
文摘In a context of growing efforts to develop sustainability strategies, energy-related issues occupy central stage in the built environment. Thus, the energy performance of housings has improved radically over the past decades. Yet other types of buildings, in particular commercial centers, haven’t received the same level of interest. As a result, there is a need for effective and practical measures to decrease their energy consumption, both for heating and electricity. The objective of the paper is to demonstrate that it is possible, through coherent strategies, to integrate energy issues and bioclimatic principles into the design process of commercial centers. It analyzes the exemplary case study of Marin Commercial Center (Switzerland). The interdisciplinary approach, based on integrated design strategies, aimed at increasing the energy efficiency while keeping the cost comparable to the market cost. The main design principles include natural ventilation, nighttime cooling with energy recovery and natural lighting, as well as optimization of mechanical systems. The results of the simulations show that Marin Center attains the best energy performance observed so far among Swiss commercial centers. It also meets the Swiss Minergie standard. The paper thus questions traditional design processes and outlines the need for interdisciplinary evaluation and monitoring approaches tailored for commercial centers. Even though most crucial decisions are taken during the early stages, all phases of the process require systematic optimization strategies, especially operating stages. Recommendations include legal measures, in particular in the fields of ventilation and air-conditioning, education, professional development and technology transfer, and financial incentives for the replacement of energy intensive installations.
基金Supported by Scientific Research Development Fund of Hefei University of Technology (2009HGXJ0174)~~
文摘Taking the planning and major architectural design projects of Anqing Children Welfare Home for example,through the research on categories and each component of solar water heating system,the paper discussed strategies and methods to realize solar energy and architectural integration design in the climate condition and location environment of Anhui Province.
文摘The development of a sustainable energy system throughout an enterprise is a complex task, which requires an agile holistic approach. Such an approach needs to include a variety of objectives including energy strategy formation and strategic decision-making, which are directly related to the analysis and management of the main areas of sustainable development: The economic, technological, environmental, and social. These multidimensional requirements of sustainability are often difficult to achieve within the enterprise, because these aspects are interrelated and influenced by various internal and external environment factors. This paper first reviews the main challenges for an energy system, and then demonstrates how a strategic agile enterprise architecture driven approach could effectively guide the sustainable energy system development. The study presented in this paper provides a holistic approach that contributes to the advancement and usage of literature dealing with issues of sustainable energy system development and agile enterprise architecture, which has not been discussed before to any great extent.
基金supported by the National Natural Science Foundation of China(The key trusted running technologies for the sensing nodes in Internet of things: 61501007The outstanding personnel training program of Beijing municipal Party Committee Organization Department (The Research of Trusted Computing environment for Internet of things in Smart City: 2014000020124G041
文摘According to the high operating costs and a large number of energy waste in the current data center network architectures, we propose a kind of trusted flow preemption scheduling combining the energy-saving routing mechanism based on typical data center network architecture. The mechanism can make the network flow in its exclusive network link bandwidth and transmission path, which can improve the link utilization and the use of the network energy efficiency. Meanwhile, we apply trusted computing to guarantee the high security, high performance and high fault-tolerant routing forwarding service, which helps improving the average completion time of network flow.
文摘The development of society and economy in China is bringing growth to all industries. In particular, the development of China’s building industry has attracted much attention. Building materials are an important part of and widely used in the building industry. Energy conservation by building materials has become an inevitable way of sustainable development. Centering on the building industry, this paper mainly discusses in detail the energy conservation ways by ecological architecture and building materials.
文摘In the new architectural configurations, energy efficiency and savings, are shown mainly by technological development, in the growing field of IT (Information Technology), integrated into the new design concept with intelligent efficiency. The objective is to adopt innovative digital technological systems, with intelligent materials that interact in the new design process and product with the computational designer for buildings which meet the needs of users and optimize efficient spaces. Innovation and energy technology are sharper focus, in tall buildings, office buildings, commercial buildings, hospitals, etc. with adoption of high-performance sensitive technological systems. The methodology is to install efficient buildings, systems with innovative digital devices that interface with the user and the central control system of building automation through Z-wave wireless networks and sensors of BIoT (Building the Internet of Things). So deep energy strategies with flexible and coordinated integrated management for climate control, distribution of electricity from renewable sources, for high-performance digital sensitive architectures, also as a response to climate change at COP 21 in Paris. Thus reducing costs with self-management of smartphones, tablets, and engineering of sustainable materials, nanostructured, to increase thermal insulation performance, mechanical, energy sensitive develops contextualized in the redevelopment of the building.
文摘The fast acceptance of cloud technology to industry explains increasing energy conservation needs and adoption of energy aware scheduling methods to cloud. Power consumption is one of the top of mind issues in cloud, because the usage of cloud storage by the individuals or organization grows rapidly. Developing an efficient power management processor architecture has gained considerable attention. However, the conventional power management mechanism fails to consider task scheduling policies. Therefore, this work presents a novel energy aware framework for power management. The proposed system leads to the development of Inclusive Power-Cognizant Processor Controller (IPCPC) for efficient power utilization. To evaluate the performance of the proposed method, simulation experiments inputting random tasks as well as tasks collected from Google Trace Logs were conducted to validate the supremacy of IPCPC. The research based on Real world Google Trace Logs gives results that proposed framework leads to less than 9% of total power consumption per task of server which proves reduction in the overall power needed.
文摘Compared with the flat architecture in the design of sensor networks, the hierarchical architecture gains much attractive for the reason of scalability, management and energy efficiency. In order to distribute the energy evenly, nodes act the cluster head in some orders. The existing approaches don’t pay a critical attention to the overhead during the role rotations. And the duration of a round is a priori, which is very application-specific. An energy-aware hierarchical architecture design scheme is put forward in this paper, namely, Adaptive Minimum Rotational Cost (AMRC) cluster formation scheme. The decision of beginning a new round is made adaptively by the cluster head itself. It combines the dynamic and static advantages in the clustering architecture. The simulation results demonstrate AMRC outperforms some other clustering protocols in many aspects.
文摘With the rapid development of the economy,the scale of construction projects in China is gradually expanding.In terms of construction technology,continuous innovation is being made to meet the needs of sustainable development strategies,and green energy conservation technologies have emerged.It has a brand new design concept,and advocates for maximum energy conservation and environmental protection,fundamentally promoting the rational use of resources and space,and preventing the expansion of air and land pollution.First of all,a brief explanation is given on the current development status of green energy conservation technology in this paper.Secondly,through the introduction and analysis of energy conservation technologies and related building cases,the in-depth research on energy conservation measures of buildings is conducted.Finally,the prospects of green energy conservation technologies are proposed based on the current development status in China.This paper has certain reference value for its related engineering and theoretical research.
文摘Energy demand will continue to rise as a result of predicted population growth. In this work, a user-friendly home energy monitoring system based on IoT is described, which is capable of collecting, analyzing, and displaying data. Users register their sensors and devices on the monitoring platform. PostgreSQL and Elasticsearch databases are used to store the resulting measurements. In a smart home, the wireless sensor ACS712 was used to monitor the flow of electricity (current and voltage) for a household device. The user can share data about electricity consumption and costs with a third party via the private IPFS (InterPlanetary File System) network. A third party can download all the energy consumption data for a device or many devices from the platform for 1 day, 3 months, 6 months, and 1 year. The studies on the development of energy-efficient technology for home devices benefit greatly from the gathered data. For security in the system, it is preferred to run Keyrock Idm, Wilma Pep Proxy, and Orion Context Broker in HTTPS mode, and MQTTS is used to retrieve sensor data. The experimental results showed that the energy monitoring system accurately records voltage, current, active power, and the total amount of power used and offers low-cost solutions to the users using household devices in a day.