According to the language of post-modern architecture which Charles Jencks proposed in the 1980s,form has been very crucial for architectural language expression.However,many suggestions also imply that the material w...According to the language of post-modern architecture which Charles Jencks proposed in the 1980s,form has been very crucial for architectural language expression.However,many suggestions also imply that the material which is deployed for building is also significant in the linguistic expression of architecture.Based on this consideration,the material use of architecture will also contain semiotic implications,whether for architects or for social consensus.How the material talks and what it says are two questions that need to be clarified.To answer these two questions,some empirical works in architecture will be examined to reveal the messages which could be delivered in architectural materials.Before this,semiotic debates in architecture will be reviewed.Then,two empirical works,one in the West and one in the East,will be considered particularly for their material deployments on the surface(façade).Since the architectural surface is the most tangible part of architecture in terms of material use,the surfaces of both projects will be discussed in detail with their implications and the atmospheres which the materials formulated and created.This paper will conclude with a consideration of the possible implications from these projects and also the different expressions of material use,which will help us to rethink the expression of the material use of architectural surface.展开更多
This article intends to bring a new perspective to the discussion of how studio-based education in architectural studies can improve its quality by embedding meta-tools as paradigmatic frameworks as a learning/teachin...This article intends to bring a new perspective to the discussion of how studio-based education in architectural studies can improve its quality by embedding meta-tools as paradigmatic frameworks as a learning/teaching strategy.The newly emerging creative and collaborative digital design tools and systems led to the re-shaping and re-definition of the traditional studio-based teaching/learning processes.The shift does not only comprise of a newly gained ability of using“design toolkits”,but also has substantial cognitive and pedagogical implications.The paper presents,describes and discusses the application of a new pedagogical approach through the application of a novel knowledge framework,that has been used in the teaching of DAD(Digital Architectural Design)in the context of a master’s level course.展开更多
With the development of the society,the function of the building also becomes rich from single refuge,and modern architects can’t satisfy the pursuit of traditional architectural form,and design goal is transformed i...With the development of the society,the function of the building also becomes rich from single refuge,and modern architects can’t satisfy the pursuit of traditional architectural form,and design goal is transformed into emphasizing the dialogue between architecture and people,architecture and emotions,and architecture and environment.As a kind of new building materials,fair-faced concrete expresses almost any emotion and meets people’s emotional needs with its excellent structural performance and good plasticity.In this paper,the characteristics,expressive force and application of fair-faced concrete are studied and analyzed,and the application and development prospect of fair-faced concrete in architectural design are summarized.展开更多
The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions...The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions. These methods are inefficient and fail to accurately control shape results. In this study, we propose a form-finding method that analyzes the load response of models under different sag and stress levels, taking into account the construction process. To analyze the system, a structural finite element model was established in ANSYS, and geometric nonlinear analysis was conducted using the Newton-Raphson method. The form-finding analysis results demonstrate that the proposed method achieves precise control of shape, with a maximum shape error ranging from 0.33% to 0.98%. Furthermore, the relationships between loads and tension forces are influenced by the deformed shape of the structures, exhibiting significant geometric nonlinear characteristics. Meanwhile, the load response analysis reveals that the stress level of the self-equilibrium state in the transversely stiffened suspended cable system is primarily governed by strength criteria, while shape is predominantly controlled by stiffness criteria. Importantly, by simulating the initial tensioning process as an initial condition, this method solves for a counterweight that satisfies the requirements and achieves a self-equilibrium state with the desired shape. The shape of the self-equilibrium state is precisely controlled by simulating the construction process. Overall, this work presents a new method for analyzing the form-finding process of large-span transversely stiffened suspended cable system, considering the construction process which was often overlooked in previous studies.展开更多
The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservat...The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservation and eco-friendly practices.It is essential to use energy-efficient and green materials in building designs to ensure the healthy growth of construction companies.This article discusses the advantages and principles of incorporating energy-saving materials in architectural design.It examines the strategies and critical control points for using energy-saving materials in architectural design,offering guidance for the sustainable development of the construction industry.展开更多
This paper discusses the digital application of building information model(BIM)technology in the architectural design stage.Taking the large-scale comprehensive development project of Guangxi headquarters base as an e...This paper discusses the digital application of building information model(BIM)technology in the architectural design stage.Taking the large-scale comprehensive development project of Guangxi headquarters base as an example,this paper analyzes in detail how BIM technology promotes the intelligence and refinement of the design process.Through the threedimensional modeling and simulation analysis of BIM technology,the project design has realized the accurate transformation from concept to operation,which not only improves the design efficiency,but also ensures the construction quality and economic benefits.This paper focuses on the application of BIM in the digital design of building structure,the deepening design of steel nodes,as well as the remarkable results in the comprehensive layout optimization of mechanical and electrical pipelines.Through the collision detection and optimization design of the BIM model,the potential design conflicts and construction problems were found and solved at the initial stage of the project,ensuring the efficient promotion and smooth implementation of the project.The research results show that BIM technology,as the core digital tool in the architectural design stage,is of great significance for improving the overall design level of the construction industry and realizing intelligent construction.展开更多
Under the influence of the world economy,China’s economic development is very rapid,the people’s living standards have been greatly improved,and the urbanization process has been accelerated.As a part of urban plann...Under the influence of the world economy,China’s economic development is very rapid,the people’s living standards have been greatly improved,and the urbanization process has been accelerated.As a part of urban planning,architecture plays an important role in urban planning and construction,so urban planning must be combined with the future development goals of the city,develop in an all-round way,strengthen architectural design,ensure the consistency of urban planning and architectural design,and create a good environment for urban development.Therefore,this paper analyzes the relationship between architectural design and urban planning under the new situation,clarifies the relationship between architectural design and urban planning,and strengthens urban construction.展开更多
The Bracket Set(dougong)is an important aspect of traditional Chinese architecture known for its exquisite structure,complexity,and rich variations.This design element has been used since the Qin and Han Dynasties and...The Bracket Set(dougong)is an important aspect of traditional Chinese architecture known for its exquisite structure,complexity,and rich variations.This design element has been used since the Qin and Han Dynasties and is still prevalent today.It highlights hierarchy and spiritual connotations in the design of a building.This article explores the application of Bracket Set elements in modern architectural design.It analyzes the specific application strategies of this design element,highlighting its value in modern architecture.The goal is to provide modern architectural designers with multiple perspectives and strategies to fully utilize the advantages of Bracket Set elements in architectural design and enhance the artistic value of their work.展开更多
Temple of the Three Sus,which was first established during the Yuan Dynasty,features a natural,unrestrained,and classically elegant garden architectural style.This paper discusses the multiple characteristics and mean...Temple of the Three Sus,which was first established during the Yuan Dynasty,features a natural,unrestrained,and classically elegant garden architectural style.This paper discusses the multiple characteristics and meanings of traditional architectural decorative patterns at Temple of the Three Sus from a semiotic perspective.First,it analyzes the denotative aspects of these patterns,including their stylistic forms,structural frameworks,and craftsmanship techniques.Second,the paper classifies the traditional architectural decorative patterns of the Temple of the Three Sus based on the types of sources of these patterns and interprets the implied meanings of each.Finally,the paper explores the application of these traditional decorative patterns in modern urban design,specifically in Meishan City,discussing the inheritance and innovation of these patterns in contemporary urban design and emphasizing the importance of integrating tradition with modernity.展开更多
This paper discusses ancestral hall architecture within the context of the Cantonese folk lineage in the Pearl River Delta.Using a typological research approach and chronological analysis,various factors that have inf...This paper discusses ancestral hall architecture within the context of the Cantonese folk lineage in the Pearl River Delta.Using a typological research approach and chronological analysis,various factors that have influenced the evolution of ancestral hall architecture are analyzed.The study specifically investigates the features of ancestral halls during the Ming and Qing dynasties.Three periods of ancient China are analyzed:The transition from Ming to Qing,the mid-Qing dynasty,and the late Qing dynasty.The variables of each period and how they influence the evolution of architectural typological features are identified.Based on our analysis,architectural features are related to economic and social factors,materials available,and craftsmanship of the construction workers.展开更多
Three-dimensional unmanned aerial vehicle(UAV)oblique photogrammetric data were used to infer mountainous gravel braided river lithofacies,lithofacies associations and architectural elements.Hierarchical architecture ...Three-dimensional unmanned aerial vehicle(UAV)oblique photogrammetric data were used to infer mountainous gravel braided river lithofacies,lithofacies associations and architectural elements.Hierarchical architecture and lithofacies associations with detailed lithofacies characterizations were comprehensively described to document the architectural model,architectural element scale and gravel particle scale.(1)Nine lithofacies(i.e.,Gmm,Gcm,Gcc,Gci,Gcl,Ss,Sm,Fsm and Fl)were identified and classified as gravel,sand and fine matrix deposits.These are typical depositional features of a mountainous dryland gravel-braided river.(2)Three architectural elements were identified,including channel(CH),gravel bar(GB)and overbank(OB).CH can be further divided into flow channel and abandoned channel,while GB consists of Central Gravel bar(CGB)and Margin Gravel bar(MGB).(3)The gravel bar is the key architectural element of the gravel braided river,with its geological attributes.The dimensions of GBs and their particles are various,but exhibit good relationships with each other.The grain size of GB decreases downstream,but the dimensions of GB do not.The bank erosion affects the GB dimensions,whereas channel incision and water flow velocity influence the grain size of GB.The conclusions can be applied to the dryland gravel braided river studies in tectonically active areas.展开更多
By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-grow...By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-growing computational demands,it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments(UEs).To address this issue,we propose an air-ground collaborative MEC(AGCMEC)architecture in this article.The proposed AGCMEC integrates all potentially available MEC servers within air and ground in the envisioned 6G,by a variety of collaborative ways to provide computation services at their best for UEs.Firstly,we introduce the AGC-MEC architecture and elaborate three typical use cases.Then,we discuss four main challenges in the AGC-MEC as well as their potential solutions.Next,we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy.Finally,we highlight several potential research directions of the AGC-MEC.展开更多
Plant height,spike,leaf,stem and grain morphologies are key components of plant architecture and related to wheat yield.A wheat(Triticum aestivum L.)mutant,wpa1,displaying temperaturedependent pleiotropic developmenta...Plant height,spike,leaf,stem and grain morphologies are key components of plant architecture and related to wheat yield.A wheat(Triticum aestivum L.)mutant,wpa1,displaying temperaturedependent pleiotropic developmental anomalies,was isolated.The WPA1 gene,encoding a von Willebrand factor type A(vWA)domain protein,was located on chromosome arm 7DS and isolated by map-based cloning.The functionality of WPA1 was validated by multiple independent EMS-induced mutants and gene editing.Phylogenetic analysis revealed that WPA1 is monocotyledon-specific in higher plants.The identification of WPA1 provides opportunity to study the temperature regulated wheat development and grain yield.展开更多
Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human ...Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human intervention.Evolutionary algorithms(EAs)for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures.Using multiobjective EAs for NAS,optimal neural architectures that meet various performance criteria can be explored and discovered efficiently.Furthermore,hardware-accelerated NAS methods can improve the efficiency of the NAS.While existing reviews have mainly focused on different strategies to complete NAS,a few studies have explored the use of EAs for NAS.In this paper,we summarize and explore the use of EAs for NAS,as well as large-scale multiobjective optimization strategies and hardware-accelerated NAS methods.NAS performs well in healthcare applications,such as medical image analysis,classification of disease diagnosis,and health monitoring.EAs for NAS can automate the search process and optimize multiple objectives simultaneously in a given healthcare task.Deep neural network has been successfully used in healthcare,but it lacks interpretability.Medical data is highly sensitive,and privacy leaks are frequently reported in the healthcare industry.To solve these problems,in healthcare,we propose an interpretable neuroevolution framework based on federated learning to address search efficiency and privacy protection.Moreover,we also point out future research directions for evolutionary NAS.Overall,for researchers who want to use EAs to optimize NNs in healthcare,we analyze the advantages and disadvantages of doing so to provide detailed guidance,and propose an interpretable privacy-preserving framework for healthcare applications.展开更多
Shoot architecture in maize is critical since it determines resource use,impacts wind and rain damage tolerance,and affects yield stability.Quantifying the diversity among inbred lines in heterosis breeding is essenti...Shoot architecture in maize is critical since it determines resource use,impacts wind and rain damage tolerance,and affects yield stability.Quantifying the diversity among inbred lines in heterosis breeding is essential,especially when describing germplasm resources.However,traditional geometric description methods oversimplify shoot architecture and ignore the plant’s overall architecture,making it difficult to reflect and illustrate diversity.This study presents a new method to describe maize shoot architecture and quantifies its diversity by combining computer vision algorithms and persistent homology.Our results reveal that persistent homology can capture key characteristics of shoot architecture in maize and other details often overlooked by traditional geometric analysis.Based on this method,the morphological diversity of shoot architecture can be mined(quantified),and the main shoot architecture types can be obtained.Consequently,this method can easily describe the diversity of shoot architecture in many maize materials.展开更多
Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p...Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.展开更多
Under the background of“artificial intelligence+X”,the development of landscape architecture industry ushers in new opportunities,and professional talents need to be updated to meet the social demand.This paper anal...Under the background of“artificial intelligence+X”,the development of landscape architecture industry ushers in new opportunities,and professional talents need to be updated to meet the social demand.This paper analyzes the cultivation demand of landscape architecture graduate students in the context of the new era,and identifies the problems by comparing the original professional graduate training mode.The new cultivation mode of graduate students in landscape architecture is proposed,including updating the target orientation of the discipline,optimizing the teaching system,building a“dualteacher”tutor team,and improving the“industry-university-research-utilization”integrated cultivation,so as to cultivate high-quality compound talents with disciplinary characteristics.展开更多
The frequent occurrence of seismic events in Italy poses a strategic problem that involves either the culture of preservation of historical heritage or the civil protection action aimed to reduce the risk to people an...The frequent occurrence of seismic events in Italy poses a strategic problem that involves either the culture of preservation of historical heritage or the civil protection action aimed to reduce the risk to people and goods(buildings,bridges,dams,slopes,etc.).Most of the Italian architectural heritage is vulnerable to earthquakes,identifying the vulnerability as the inherent predisposition of the masonry building to suffer damage and collapse during an earthquake.In fact,the structural concept prevailing in these ancient masonry buildings is aimed at ensuring prevalent resistance to vertical gravity loads.Rarely do these ancient masonry structures offer relevant resistance to actions other than vertical ones and then they are intrinsically vulnerable to stresses induced by the earthquakes.One of the main technical activities carried out by the Civil Protection after an earthquake is to assess the damage in the buildings and to evaluate their own usability.Regarding historical buildings,ad-hoc synthetic forms,drafted in agreement between the Italian Civil Protection Department and the Ministry of Cultural Heritage and Activities and Tourism and based on visual inspection,are adopted by qualified technicians.In this paper,such activities are described and discussed along with the Italian Civil Protection System.However,given the complexity of the main technical activities to be performed after an earthquake there is a need for more accurate methods based on Structural Health Monitoring.展开更多
Taking the bottom grey space with great influence on outdoor thermal comfort as the research object,this paper summarizes the morphological characteristics and climate response methods of two types of bottom grey spac...Taking the bottom grey space with great influence on outdoor thermal comfort as the research object,this paper summarizes the morphological characteristics and climate response methods of two types of bottom grey space:overhead grey space and canopy grey space.The spatial form indexes that greatly affect the ecological performance of architectural grey space such as ventilation,shading,etc.are discussed,and two passive spatial form indexes of spatial scale and location orientation are studied.According to the research of related scholars and literature summary,the optimization strategies for passive form design of architectural grey space based on climate adaptability are put forward,which will provide a reference for the climate adaptive design of architectural grey space,and helps to improve the outdoor thermal environment from the micro scale and create a better living environment.展开更多
Against the background of outstanding traditional Chinese culture and the innovation-drivendevelopment strategy, this study analyzed regional cultures of Yichang where ancient Ba and Chu culturesmet and blended, propo...Against the background of outstanding traditional Chinese culture and the innovation-drivendevelopment strategy, this study analyzed regional cultures of Yichang where ancient Ba and Chu culturesmet and blended, proposed regional architectural designs adapted to modern conditions, fully clarified thedesign concepts of “deeply exploring, highly condensing, making the past serve the present, inheriting andinnovating” through analyzing the design cases in many regional architectural projects. The paper aimedat further inheriting and developing the outstanding traditional Chinese cultures, and provided theoreticalreferences for future designs.展开更多
文摘According to the language of post-modern architecture which Charles Jencks proposed in the 1980s,form has been very crucial for architectural language expression.However,many suggestions also imply that the material which is deployed for building is also significant in the linguistic expression of architecture.Based on this consideration,the material use of architecture will also contain semiotic implications,whether for architects or for social consensus.How the material talks and what it says are two questions that need to be clarified.To answer these two questions,some empirical works in architecture will be examined to reveal the messages which could be delivered in architectural materials.Before this,semiotic debates in architecture will be reviewed.Then,two empirical works,one in the West and one in the East,will be considered particularly for their material deployments on the surface(façade).Since the architectural surface is the most tangible part of architecture in terms of material use,the surfaces of both projects will be discussed in detail with their implications and the atmospheres which the materials formulated and created.This paper will conclude with a consideration of the possible implications from these projects and also the different expressions of material use,which will help us to rethink the expression of the material use of architectural surface.
基金the students of the M.Sc.Digital Architectural Design course at Salford University between 2008-2012.
文摘This article intends to bring a new perspective to the discussion of how studio-based education in architectural studies can improve its quality by embedding meta-tools as paradigmatic frameworks as a learning/teaching strategy.The newly emerging creative and collaborative digital design tools and systems led to the re-shaping and re-definition of the traditional studio-based teaching/learning processes.The shift does not only comprise of a newly gained ability of using“design toolkits”,but also has substantial cognitive and pedagogical implications.The paper presents,describes and discusses the application of a new pedagogical approach through the application of a novel knowledge framework,that has been used in the teaching of DAD(Digital Architectural Design)in the context of a master’s level course.
文摘With the development of the society,the function of the building also becomes rich from single refuge,and modern architects can’t satisfy the pursuit of traditional architectural form,and design goal is transformed into emphasizing the dialogue between architecture and people,architecture and emotions,and architecture and environment.As a kind of new building materials,fair-faced concrete expresses almost any emotion and meets people’s emotional needs with its excellent structural performance and good plasticity.In this paper,the characteristics,expressive force and application of fair-faced concrete are studied and analyzed,and the application and development prospect of fair-faced concrete in architectural design are summarized.
文摘The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions. These methods are inefficient and fail to accurately control shape results. In this study, we propose a form-finding method that analyzes the load response of models under different sag and stress levels, taking into account the construction process. To analyze the system, a structural finite element model was established in ANSYS, and geometric nonlinear analysis was conducted using the Newton-Raphson method. The form-finding analysis results demonstrate that the proposed method achieves precise control of shape, with a maximum shape error ranging from 0.33% to 0.98%. Furthermore, the relationships between loads and tension forces are influenced by the deformed shape of the structures, exhibiting significant geometric nonlinear characteristics. Meanwhile, the load response analysis reveals that the stress level of the self-equilibrium state in the transversely stiffened suspended cable system is primarily governed by strength criteria, while shape is predominantly controlled by stiffness criteria. Importantly, by simulating the initial tensioning process as an initial condition, this method solves for a counterweight that satisfies the requirements and achieves a self-equilibrium state with the desired shape. The shape of the self-equilibrium state is precisely controlled by simulating the construction process. Overall, this work presents a new method for analyzing the form-finding process of large-span transversely stiffened suspended cable system, considering the construction process which was often overlooked in previous studies.
文摘The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservation and eco-friendly practices.It is essential to use energy-efficient and green materials in building designs to ensure the healthy growth of construction companies.This article discusses the advantages and principles of incorporating energy-saving materials in architectural design.It examines the strategies and critical control points for using energy-saving materials in architectural design,offering guidance for the sustainable development of the construction industry.
基金The 2023 Guangxi University Young and Middle-Aged Teachers’Scientific Research Basic Ability Improvement Project“Research on Seismic Performance of Prefabricated CFST Column-SRC Beam Composite Joints”(Project No.2023KY1204)The 2023 Guangxi Vocational Education Teaching Reform Research Project“Research and Practice on the Cultivation of Digital Talents in Prefabricated Buildings in the Context of Deepening the Integration of Industry and Education”(Project No.GXGZJG2023B052)The 2022 Guangxi Polytechnic of Construction School-Level Teaching Innovation Team Project“Prefabricated and Intelligent Teaching Innovation Team”(Project No.Gui Jian Yuan Ren[2022]No.15)。
文摘This paper discusses the digital application of building information model(BIM)technology in the architectural design stage.Taking the large-scale comprehensive development project of Guangxi headquarters base as an example,this paper analyzes in detail how BIM technology promotes the intelligence and refinement of the design process.Through the threedimensional modeling and simulation analysis of BIM technology,the project design has realized the accurate transformation from concept to operation,which not only improves the design efficiency,but also ensures the construction quality and economic benefits.This paper focuses on the application of BIM in the digital design of building structure,the deepening design of steel nodes,as well as the remarkable results in the comprehensive layout optimization of mechanical and electrical pipelines.Through the collision detection and optimization design of the BIM model,the potential design conflicts and construction problems were found and solved at the initial stage of the project,ensuring the efficient promotion and smooth implementation of the project.The research results show that BIM technology,as the core digital tool in the architectural design stage,is of great significance for improving the overall design level of the construction industry and realizing intelligent construction.
文摘Under the influence of the world economy,China’s economic development is very rapid,the people’s living standards have been greatly improved,and the urbanization process has been accelerated.As a part of urban planning,architecture plays an important role in urban planning and construction,so urban planning must be combined with the future development goals of the city,develop in an all-round way,strengthen architectural design,ensure the consistency of urban planning and architectural design,and create a good environment for urban development.Therefore,this paper analyzes the relationship between architectural design and urban planning under the new situation,clarifies the relationship between architectural design and urban planning,and strengthens urban construction.
文摘The Bracket Set(dougong)is an important aspect of traditional Chinese architecture known for its exquisite structure,complexity,and rich variations.This design element has been used since the Qin and Han Dynasties and is still prevalent today.It highlights hierarchy and spiritual connotations in the design of a building.This article explores the application of Bracket Set elements in modern architectural design.It analyzes the specific application strategies of this design element,highlighting its value in modern architecture.The goal is to provide modern architectural designers with multiple perspectives and strategies to fully utilize the advantages of Bracket Set elements in architectural design and enhance the artistic value of their work.
文摘Temple of the Three Sus,which was first established during the Yuan Dynasty,features a natural,unrestrained,and classically elegant garden architectural style.This paper discusses the multiple characteristics and meanings of traditional architectural decorative patterns at Temple of the Three Sus from a semiotic perspective.First,it analyzes the denotative aspects of these patterns,including their stylistic forms,structural frameworks,and craftsmanship techniques.Second,the paper classifies the traditional architectural decorative patterns of the Temple of the Three Sus based on the types of sources of these patterns and interprets the implied meanings of each.Finally,the paper explores the application of these traditional decorative patterns in modern urban design,specifically in Meishan City,discussing the inheritance and innovation of these patterns in contemporary urban design and emphasizing the importance of integrating tradition with modernity.
文摘This paper discusses ancestral hall architecture within the context of the Cantonese folk lineage in the Pearl River Delta.Using a typological research approach and chronological analysis,various factors that have influenced the evolution of ancestral hall architecture are analyzed.The study specifically investigates the features of ancestral halls during the Ming and Qing dynasties.Three periods of ancient China are analyzed:The transition from Ming to Qing,the mid-Qing dynasty,and the late Qing dynasty.The variables of each period and how they influence the evolution of architectural typological features are identified.Based on our analysis,architectural features are related to economic and social factors,materials available,and craftsmanship of the construction workers.
基金supported by the National Science and Technology Major Project(Grant No.2017ZX05008-006004-002)the National Natural Science Foundation of China(Grant Nos.41502126 and 41902155)the Open Foundation of Top Disciplines in Yangtze University(Grant No.2019KFJJ0818022)。
文摘Three-dimensional unmanned aerial vehicle(UAV)oblique photogrammetric data were used to infer mountainous gravel braided river lithofacies,lithofacies associations and architectural elements.Hierarchical architecture and lithofacies associations with detailed lithofacies characterizations were comprehensively described to document the architectural model,architectural element scale and gravel particle scale.(1)Nine lithofacies(i.e.,Gmm,Gcm,Gcc,Gci,Gcl,Ss,Sm,Fsm and Fl)were identified and classified as gravel,sand and fine matrix deposits.These are typical depositional features of a mountainous dryland gravel-braided river.(2)Three architectural elements were identified,including channel(CH),gravel bar(GB)and overbank(OB).CH can be further divided into flow channel and abandoned channel,while GB consists of Central Gravel bar(CGB)and Margin Gravel bar(MGB).(3)The gravel bar is the key architectural element of the gravel braided river,with its geological attributes.The dimensions of GBs and their particles are various,but exhibit good relationships with each other.The grain size of GB decreases downstream,but the dimensions of GB do not.The bank erosion affects the GB dimensions,whereas channel incision and water flow velocity influence the grain size of GB.The conclusions can be applied to the dryland gravel braided river studies in tectonically active areas.
基金supported in part by the National Natural Science Foundation of China under Grant 62171465,62072303,62272223,U22A2031。
文摘By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-growing computational demands,it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments(UEs).To address this issue,we propose an air-ground collaborative MEC(AGCMEC)architecture in this article.The proposed AGCMEC integrates all potentially available MEC servers within air and ground in the envisioned 6G,by a variety of collaborative ways to provide computation services at their best for UEs.Firstly,we introduce the AGC-MEC architecture and elaborate three typical use cases.Then,we discuss four main challenges in the AGC-MEC as well as their potential solutions.Next,we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy.Finally,we highlight several potential research directions of the AGC-MEC.
基金supported by the Key Research and Development Program of Zhejiang(2024SSYS0099)the National Key Research and Development Program of China(2022YFD1200203)Key Research and Development Program of Hebei province(22326305D).
文摘Plant height,spike,leaf,stem and grain morphologies are key components of plant architecture and related to wheat yield.A wheat(Triticum aestivum L.)mutant,wpa1,displaying temperaturedependent pleiotropic developmental anomalies,was isolated.The WPA1 gene,encoding a von Willebrand factor type A(vWA)domain protein,was located on chromosome arm 7DS and isolated by map-based cloning.The functionality of WPA1 was validated by multiple independent EMS-induced mutants and gene editing.Phylogenetic analysis revealed that WPA1 is monocotyledon-specific in higher plants.The identification of WPA1 provides opportunity to study the temperature regulated wheat development and grain yield.
基金supported in part by the National Natural Science Foundation of China (NSFC) under Grant No.61976242in part by the Natural Science Fund of Hebei Province for Distinguished Young Scholars under Grant No.F2021202010+2 种基金in part by the Fundamental Scientific Research Funds for Interdisciplinary Team of Hebei University of Technology under Grant No.JBKYTD2002funded by Science and Technology Project of Hebei Education Department under Grant No.JZX2023007supported by 2022 Interdisciplinary Postgraduate Training Program of Hebei University of Technology under Grant No.HEBUT-YXKJC-2022122.
文摘Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human intervention.Evolutionary algorithms(EAs)for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures.Using multiobjective EAs for NAS,optimal neural architectures that meet various performance criteria can be explored and discovered efficiently.Furthermore,hardware-accelerated NAS methods can improve the efficiency of the NAS.While existing reviews have mainly focused on different strategies to complete NAS,a few studies have explored the use of EAs for NAS.In this paper,we summarize and explore the use of EAs for NAS,as well as large-scale multiobjective optimization strategies and hardware-accelerated NAS methods.NAS performs well in healthcare applications,such as medical image analysis,classification of disease diagnosis,and health monitoring.EAs for NAS can automate the search process and optimize multiple objectives simultaneously in a given healthcare task.Deep neural network has been successfully used in healthcare,but it lacks interpretability.Medical data is highly sensitive,and privacy leaks are frequently reported in the healthcare industry.To solve these problems,in healthcare,we propose an interpretable neuroevolution framework based on federated learning to address search efficiency and privacy protection.Moreover,we also point out future research directions for evolutionary NAS.Overall,for researchers who want to use EAs to optimize NNs in healthcare,we analyze the advantages and disadvantages of doing so to provide detailed guidance,and propose an interpretable privacy-preserving framework for healthcare applications.
基金The study work was supported by the National Key Research and Development Program of China(2022ZD0401801)the Chinese Universities Scientific Funds(2023TC107).
文摘Shoot architecture in maize is critical since it determines resource use,impacts wind and rain damage tolerance,and affects yield stability.Quantifying the diversity among inbred lines in heterosis breeding is essential,especially when describing germplasm resources.However,traditional geometric description methods oversimplify shoot architecture and ignore the plant’s overall architecture,making it difficult to reflect and illustrate diversity.This study presents a new method to describe maize shoot architecture and quantifies its diversity by combining computer vision algorithms and persistent homology.Our results reveal that persistent homology can capture key characteristics of shoot architecture in maize and other details often overlooked by traditional geometric analysis.Based on this method,the morphological diversity of shoot architecture can be mined(quantified),and the main shoot architecture types can be obtained.Consequently,this method can easily describe the diversity of shoot architecture in many maize materials.
基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110762Research Grants Council of the Hong Kong Special Administrative Region,China,Grant/Award Number:R6005‐20Shenzhen Key Laboratory of Advanced Energy Storage,Grant/Award Number:ZDSYS20220401141000001。
文摘Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.
基金University-level Graduate Education Reform Project of Yangtze University(YJY202329).
文摘Under the background of“artificial intelligence+X”,the development of landscape architecture industry ushers in new opportunities,and professional talents need to be updated to meet the social demand.This paper analyzes the cultivation demand of landscape architecture graduate students in the context of the new era,and identifies the problems by comparing the original professional graduate training mode.The new cultivation mode of graduate students in landscape architecture is proposed,including updating the target orientation of the discipline,optimizing the teaching system,building a“dualteacher”tutor team,and improving the“industry-university-research-utilization”integrated cultivation,so as to cultivate high-quality compound talents with disciplinary characteristics.
文摘The frequent occurrence of seismic events in Italy poses a strategic problem that involves either the culture of preservation of historical heritage or the civil protection action aimed to reduce the risk to people and goods(buildings,bridges,dams,slopes,etc.).Most of the Italian architectural heritage is vulnerable to earthquakes,identifying the vulnerability as the inherent predisposition of the masonry building to suffer damage and collapse during an earthquake.In fact,the structural concept prevailing in these ancient masonry buildings is aimed at ensuring prevalent resistance to vertical gravity loads.Rarely do these ancient masonry structures offer relevant resistance to actions other than vertical ones and then they are intrinsically vulnerable to stresses induced by the earthquakes.One of the main technical activities carried out by the Civil Protection after an earthquake is to assess the damage in the buildings and to evaluate their own usability.Regarding historical buildings,ad-hoc synthetic forms,drafted in agreement between the Italian Civil Protection Department and the Ministry of Cultural Heritage and Activities and Tourism and based on visual inspection,are adopted by qualified technicians.In this paper,such activities are described and discussed along with the Italian Civil Protection System.However,given the complexity of the main technical activities to be performed after an earthquake there is a need for more accurate methods based on Structural Health Monitoring.
基金General Project of Natural Science Foundation of Beijing City(8202017)Youth Talent Support Program of 2018 Beijing Municipal University Academic Human Resources Development(PXM2018_014212_000043)。
文摘Taking the bottom grey space with great influence on outdoor thermal comfort as the research object,this paper summarizes the morphological characteristics and climate response methods of two types of bottom grey space:overhead grey space and canopy grey space.The spatial form indexes that greatly affect the ecological performance of architectural grey space such as ventilation,shading,etc.are discussed,and two passive spatial form indexes of spatial scale and location orientation are studied.According to the research of related scholars and literature summary,the optimization strategies for passive form design of architectural grey space based on climate adaptability are put forward,which will provide a reference for the climate adaptive design of architectural grey space,and helps to improve the outdoor thermal environment from the micro scale and create a better living environment.
基金Open Fund of Ba-Chu Art Development&Research Center,Key Base of 2021 Humanities and Social Sciences Researches of Hubei Universities and Colleges(2021KF06)Key Research Program of 2020 Philosophy and Social Sciences OF Hubei Universities and Colleges(20ZD033).
文摘Against the background of outstanding traditional Chinese culture and the innovation-drivendevelopment strategy, this study analyzed regional cultures of Yichang where ancient Ba and Chu culturesmet and blended, proposed regional architectural designs adapted to modern conditions, fully clarified thedesign concepts of “deeply exploring, highly condensing, making the past serve the present, inheriting andinnovating” through analyzing the design cases in many regional architectural projects. The paper aimedat further inheriting and developing the outstanding traditional Chinese cultures, and provided theoreticalreferences for future designs.