To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from ...To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from the top-level perspective of multi-service joint warfare.First,an overall planning and analysis method of architecture modeling is proposed with the idea of a bionic analogy for battlefield target intelligence system architecture modeling,which reduces the difficulty of the planning and design process.The method introduces the Department of Defense architecture framework(DoDAF)modeling method,the multi-living agent(MLA)theory modeling method,and other combinations for planning and modeling.A set of rapid planning methods that can be applied to model the architecture of various types of complex systems is formed.Further,the liveness analysis of the battlefield target intelligence system is carried out,and the problems of the existing system are presented from several aspects.And the technical prediction of the development and construction is given,which provides directional ideas for the subsequent research and development of the battlefield target intelligence system.In the end,the proposed architecture model of the battlefield target intelligence system is simulated and verified by applying the colored Petri nets(CPN)simulation software.The analysis demonstrates the reasonable integrity of its logic.展开更多
At present,the architecture modeling method of fluvial reservoirs are still developing.Traditional methods usually use grids to characterize architecture interbeds within the reservoir.Due to the thin thickness of thi...At present,the architecture modeling method of fluvial reservoirs are still developing.Traditional methods usually use grids to characterize architecture interbeds within the reservoir.Due to the thin thickness of this type of the interlayers,the number of the model grids must be greatly expanded.The number of grids in the tens of millions often makes an expensive computation;however,upscaling the model will generate a misleading model.The above confusion is the major reason that restricts the largescale industrialization of fluvial reservoir architecture models in oilfield development and production.Therefore,this paper explores an intelligent architecture modeling method for multilevel fluvial reservoirs based on architecture interface and element.Based on the superpositional relationship of different architectural elements within the fluvial reservoir,this method uses a combination of multilevel interface constraints and non-uniform grid techniques to build a high-resolution 3D geological model for reservoir architecture.Through the grid upscaling technology of heterogeneous architecture elements,different upscaling densities are given to the lateral-accretion bedding and lateral-accretion bodies to simplify the model gridding.This new method greatly reduces the number of model grids while ensuring the accuracy of lateral-accretion bedding models,laying a foundation for large-scale numerical simulation of the subsequent industrialization of the architecture model.This method has been validated in A layer of X oilfield with meandering fluvial channel sands as reservoirs and B layer of Y oilfield with braided river sands as reservoirs.The simulation results show that it has a higher accuracy of production history matching and remaining oil distribution forecast of the targeted sand body.The numerical simulation results show that in the actual development process of oilfield,the injected water will not displace oil in a uniform diffusive manner as traditionally assumed,but in a more complex pattern with oil in upper part of sand body being left behind as residual oil due to the influences of different levels of architecture interfaces.This investigation is important to guiding reservoir evaluation,remaining oil analysis,profile control and potential tapping and well pattern adjustment.展开更多
China’s space technology has gradually improved from the early stages’ introduction, absorption and re-innovation based on backward design to independent innovation based on forward design. It is necessary to develo...China’s space technology has gradually improved from the early stages’ introduction, absorption and re-innovation based on backward design to independent innovation based on forward design. It is necessary to develop a new approach of systems engineering to improve the quality and efficiency of space systems design considering the large number of original design problems expected in the future. Adopting Model-Based Systems Engineering(MBSE) and Digital Twin method are important development initiatives in the field of modern engineering design. In the initial phase of system design, it is necessary to generate firm system architecture models based on the needs of stakeholders. The quality of the system design in this phase has a great impact on the detailed design and implementation for the subsequent system, and also plays an important role in the performance, development progress and cost of the whole system. Through the collaboration of cross-professional teams, modeling and model execution, comparing the model execution with expected results, MBSE has enabled digital model-level verification and validation before test verification and validation based on physical products, thus improving the design exactness, completeness and greatly reducing design errors or defects. This paper explores the logical ideas behind modeling of system architectures in order to promote the adoption of MBSE in the field of space systems.展开更多
Graphics Processing Units(GPUs)are used to accelerate computing-intensive tasks,such as neural networks,data analysis,high-performance computing,etc.In the past decade or so,researchers have done a lot of work on GPU ...Graphics Processing Units(GPUs)are used to accelerate computing-intensive tasks,such as neural networks,data analysis,high-performance computing,etc.In the past decade or so,researchers have done a lot of work on GPU architecture and proposed a variety of theories and methods to study the microarchitectural characteristics of various GPUs.In this study,the GPU serves as a co-processor and works together with the CPU in an embedded real-time system to handle computationally intensive tasks.It models the architecture of the GPU and further considers it based on some excellent work.The SIMT mechanism and Cache-miss situation provide a more detailed analysis of the GPU architecture.In order to verify the GPU architecture model proposed in this article,10 GPU kernel_task and an Nvidia GPU device were used to perform experiments.The experimental results showed that the minimum error between the kernel task execution time predicted by the GPU architecture model proposed in this article and the actual measured kernel task execution time was 3.80%,and the maximum error was 8.30%.展开更多
In order to support enterprise integration, a kind of model construct based enterprise model architecture and its modeling approach are studied in this paper. First, the structural makeup and internal relationships of...In order to support enterprise integration, a kind of model construct based enterprise model architecture and its modeling approach are studied in this paper. First, the structural makeup and internal relationships of enterprise model architecture are discussed. Then, the concept of reusable model construct (MC) which belongs to the control view and can help to derive other views is proposed. The modeling approach based on model construct consists of three steps, reference model architecture synthesis, enterprise model customization, system design and implementation. According to MC based modeling approach a case study with the background of one-kind-product machinery manufacturing enterprises is illustrated. It is shown that proposal model construct based enterprise model architecture and modeling approach are practical and efficient.展开更多
This paper presents an architecture of Computer Integrated Production System in Thermal Power Plant(TPP-CIPS). This architecture is a successful model with a three-dimensional space based on hierarchial dimension,view...This paper presents an architecture of Computer Integrated Production System in Thermal Power Plant(TPP-CIPS). This architecture is a successful model with a three-dimensional space based on hierarchial dimension,view dimension and life period dimension. Hierarchial view includes Management Information System (MIS), SupervisoryInformation System (SIS) and process automation systems such as Distributed Control System (DCS). View dimensionincludes function view, resource view, organization view and information view. Life period view includes system analyses,system design, system implementation, operation maintenance and system optimization.[展开更多
Compressed earth blocks (CEB) are an alternative to cement blocks in the construction of wall masonry. However, the optimal architectural construction methods for adequate thermal comfort for occupants in hot and arid...Compressed earth blocks (CEB) are an alternative to cement blocks in the construction of wall masonry. However, the optimal architectural construction methods for adequate thermal comfort for occupants in hot and arid environments are not mastered. This article evaluates the influence of architectural and constructive modes of buildings made of CEB walls and concrete block walls, to optimize and compare their thermal comfort in the hot and dry tropical climate of Ouagadougou, Burkina Faso. Two identical pilot buildings whose envelopes are made of CEB and concrete blocks were monitored for this study. The thermal models of the pilot buildings were implemented in the SketchUp software using an extension of EnergyPlus. The models were empirically validated after calibration against measured thermal data from the buildings. The models were used to do a parametric analysis for optimization of the thermal performances by simulating plaster coatings on the exterior of walls, airtight openings and natural ventilation depending on external weather conditions. The results show that the CEB building displays 7016 hours of discomfort, equivalent to 80.1% of the time, and the concrete building displays 6948 hours of discomfort, equivalent to 79.3% of the time. The optimization by modifications reduced the discomfort to 2918 and 3125 hours respectively;i.e. equivalent to only 33.3% for the CEB building and 35.7% for the concrete building. More study should evaluate thermal optimizations in buildings in real time of usage such as residential buildings commonly used by the local middle class. The use of CEB as a construction material and passive means of improving thermal comfort is a suitable ecological and economical option to replace cementitious material.展开更多
Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are g...Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are gaining higher priority from CSES users when evaluating different modeling methodologies for CSES. Traditional CSES modeling methodologies are either domain-neutral (lack of domain characteristics consideration and limited support for model composability) or domain-oriented (lack of openness and evolvability) and fall short of the three NFRs. Inspired by the concept of architecture in systems engineering and software engineering fields, we extend it into a concept of model architecture for complex simulation systems, and propose a model architecture-oriented modeling methodology in which the model architecture plays a central role in achieving the three NFRs. Various model-driven engineering (MDE) approaches and technologies, including simulation modeling platform (SMP), unified modeling language (UML), domain specific modeling (DSM), eclipse modeling framework (EMF), graphical modeling framework (GMF), and so forth, are applied where possible in representing the CSES model architecture and its components' behaviors from physical and cognitive domain aspects. A prototype CSES system, called weapon effectiveness simulation system (WESS), and a non-trivial air-combat simulation example are presented to demonstrate the methodology.展开更多
On the basis of a special project for teaching reform, in order to change the boring and dull situation of History of Chinese Architecture in students, ancient architecture model was introduced in the teaching process...On the basis of a special project for teaching reform, in order to change the boring and dull situation of History of Chinese Architecture in students, ancient architecture model was introduced in the teaching process of the pure history course. Through the interpretation, construction, and exhibition stages,the ability of students in grasping the knowledge of architecture history can be strengthened. Then, from the historical background, physical composition, artistic conception of space, structural system, detailed structure, and architectural evolution, the positive significance of ancient architecture model to the teaching of the History of Chinese Architecture was discussed, in the hope of providing certain theoretical basis for the teaching of the History of Chinese Architecture.展开更多
This paper addresses the issue of designing the detailed architectures of Field-Programmable Gate Arrays(FPGAs), which has a great impact on the overall performances of an FPGA in practice. Firstly, a novel FPGA archi...This paper addresses the issue of designing the detailed architectures of Field-Programmable Gate Arrays(FPGAs), which has a great impact on the overall performances of an FPGA in practice. Firstly, a novel FPGA architecture description model is proposed based on an easy-to-use file format known as YAML. This format permits the description of any detailed architecture of hard blocks and channels. Then a general algorithm of building FPGA resource graph is presented. The proposed model is scalable and capable of dealing with detailed architecture design and can be used in FPGA architecture evaluation system which is developed to enable detailed architecture design. Experimental results show that a maximum of 16.36% reduction in total wirelength and a maximum of 9.34% reduction in router effort can be obtained by making very little changes to detailed architectures, which verifies the necessity and effectiveness of the proposed model.展开更多
Beyond 3G (B3G) system, the future mobile communication system, is envisioned as a user-centric, open, and convergent information infrastructure capable of providing personalized services. It is extremely important to...Beyond 3G (B3G) system, the future mobile communication system, is envisioned as a user-centric, open, and convergent information infrastructure capable of providing personalized services. It is extremely important to develop service models and architectures for B3G system. A three-dimension service model is proposed. The dimensions are identified as service support scope, service capability definition, and adaptive feature elements. Then, the hierarchical service architecture for B3G is introduced. The enabling technologies for B3G service architecture are discussed in this paper, such as Virtual Home Environment (VHE), service support environment, service openness, distributed computing, intelligent technology, and profile.展开更多
Aiming at the characteristics of modularity and reconfigurable in open architecture computer numerical control (CNC) system, the open architecture CNC system, Harbin Institute of Tech- nology computer numerical cont...Aiming at the characteristics of modularity and reconfigurable in open architecture computer numerical control (CNC) system, the open architecture CNC system, Harbin Institute of Tech- nology computer numerical control (HITCNC), is researched and manufactured based on the interface standards. The system's external interfaces are coincident with the corresponding international standards, and the internal interfaces follow the open modular architecture controller (OMAC) agreement. In the research and manufacturing process, object-oriented technology is used to ensure the openness of the HITCNC, and static programming is applied in the CNC system according to the idea of modularization disassembly. The HITCNC also actualizes real-time and unreal-time modules adopting real-time dynamical linked library (RTDLL) and component object model (COM). Finite state ma- chine (FSM) is adopted to do dynamically modeling of HITCNC. The complete separation between the software and the hardware is achieved in the HITCNC by applying the SoftSERCANS technique. The application of the above key techniques decreases the programming workload greatly, and uses software programs replacing hardware functions, which offers plenty technique ensures for the openness of HITCNC. Finally, based on the HITCNC, a three-dimensional milling system is established. On the system, series experiments are done to validate the expandability and interchangeability of HITCNC. The results of the experiments show that the established open architecture CNC system HITCNC is correct and feasible, and has good openness.展开更多
The 3D digitalization and documentation of ancient Chinese architecture is challenging because of architectural complexity and structural delicacy.To generate complete and detailed models of this architecture,it is be...The 3D digitalization and documentation of ancient Chinese architecture is challenging because of architectural complexity and structural delicacy.To generate complete and detailed models of this architecture,it is better to acquire,process,and fuse multi-source data instead of single-source data.In this paper,we describe our work on 3D digital preservation of ancient Chinese architecture based on multi source data.We first briefly introduce two surveyed ancient Chinese temples,Foguang Temple and Nanchan Temple.Then,we report the data acquisition equipment we used and the multi-source data we acquired.Finally,we provide an overview of several applications we conducted based on the acquired data,including ground and aerial image fusion,image and LiDAR(light detection and ranging)data fusion,and architectural scene surface reconstruction and semantic modeling.We believe that it is necessary to involve multi-source data for the 3D digital preservation of ancient Chinese architecture,and that the work in this paper will serve as a heuristic guideline for the related research communities.展开更多
Aimed at deficiencies in the development and implementation of Enterprise Service Architecture (ESA) software, an ESA software developing mode based on Model Driven Architecture (MDA) is put forward. This mode inc...Aimed at deficiencies in the development and implementation of Enterprise Service Architecture (ESA) software, an ESA software developing mode based on Model Driven Architecture (MDA) is put forward. This mode includes a calculation-independent model ( CIM ), a platform-independent model ( PIM ), a platform-specific model (PSM) and a code level. Based on this mode, the modeling architecture of CIM level is presented. CIM here includes a global model, a process model, an information model and an organization model. The modeling elements of global model, process recta-model, information recta-model and organization meta-model are defined in detail and the relationship between them is described. The reflecting relationship between these models is established as well.展开更多
Deep learning (DL) has experienced an exponential development in recent years, with major impact in many medical fields, especially in the field of medical image and, respectively, as a specific task, in the segmentat...Deep learning (DL) has experienced an exponential development in recent years, with major impact in many medical fields, especially in the field of medical image and, respectively, as a specific task, in the segmentation of the medical image. We aim to create a computer assisted diagnostic method, optimized by the use of deep learning (DL) and validated by a randomized controlled clinical trial, is a highly automated tool for diagnosing and staging precancerous and cervical cancer and thyroid cancers. We aim to design a high-performance deep learning model, combined from convolutional neural network (U-Net)-based architectures, for segmentation of the medical image that is independent of the type of organs/tissues, dimensions or type of image (2D/3D) and to validate the DL model in a randomized, controlled clinical trial. We used as a methodology primarily the analysis of U-Net-based architectures to identify the key elements that we considered important in the design and optimization of the combined DL model, from the U-Net-based architectures, imagined by us. Secondly, we will validate the performance of the DL model through a randomized controlled clinical trial. The DL model designed by us will be a highly automated tool for diagnosing and staging precancers and cervical cancer and thyroid cancers. The combined model we designed takes into account the key features of each of the architectures Overcomplete Convolutional Network Kite-Net (Kite-Net), Attention gate mechanism is an improvement added on convolutional network architecture for fast and precise segmentation of images (Attention U-Net), Harmony Densely Connected Network-Medical image Segmentation (HarDNet-MSEG). In this regard, we will create a comprehensive computer assisted diagnostic methodology validated by a randomized controlled clinical trial. The model will be a highly automated tool for diagnosing and staging precancers and cervical cancer and thyroid cancers. This would help drastically minimize the time and effort that specialists put into analyzing medical images, help to achieve a better therapeutic plan, and can provide a “second opinion” of computer assisted diagnosis.展开更多
A series of researches on process planning system architecture is described.The definition of process planning in CIMS, a unified description for work procedure of various CAPP systems,including retneval,variant and g...A series of researches on process planning system architecture is described.The definition of process planning in CIMS, a unified description for work procedure of various CAPP systems,including retneval,variant and generative systems,and the information models about part, manufacturing facility are provided to form scientific basis for process planning automation where a Part Model based on Feature and a Production Environment Model based on Work-Element are to be important supports for implementation of the integrated process planning system.These concepts are applied to the development of a prototype system SIP,which is suitable for box-type mechanical parts and consists of three subsystems:CAD,CAPP and NCP.They are linked together by neutral files as interfaces. This is a successfol implementation for engineering integration.展开更多
The existing research results of virtual modeling of rice plant, however, is far from perfect compared to that of other crops due to its complex structure and growth process. Techniques to visually simulate the archit...The existing research results of virtual modeling of rice plant, however, is far from perfect compared to that of other crops due to its complex structure and growth process. Techniques to visually simulate the architecture of rice plant and its growth process are presented based on the analysis of the morphological characteristics at different stages. Firstly, the simulations of geometrical shape, the bending status and the structural distortion of rice leaves are conducted. Then, by using an improved model for bending deformation, the curved patterns of panicle axis and various types of panicle branches are generated, and the spatial shape of rice panicle is therefore created. Parametric L-system is employed to generate its topological structures, and finite-state automaton is adopted to describe the development of geometrical structures. Finally, the computer visualization of three-dimensional morphologies of rice plant at both organ and individual levels is achieved. The experimental results showed that the proposed methods of modeling the three-dimensional shapes of organs and simulating the growth of rice plant are feasible and effective, and the generated three-dimensional images are realistic.展开更多
With the purpose of enhancing effective collaboration between architects and structural engineers in the building design field, an integration tool was developed for supporting information exchange from architectural ...With the purpose of enhancing effective collaboration between architects and structural engineers in the building design field, an integration tool was developed for supporting information exchange from architectural model to structural model. The PKPM (Bopomofo acronym, a Chinese building design software) structural model and an industry foundation classes (IFC) data model were adopted and analyzed to design the framework of the integration tool. The technique of mixed program languages (C++ and FORTRAN) was applied to developing the tool software, and the connectivity relationships and intersection nodes between the structural elements were optimized and simplified. A case study was implemented to illustrate the method to use the integration tool for information exchange from IFC-format architectural model to PKPM structural model. The results show that the tool can extract the information of architectural model and form a corresponding structural model. The presented method can help to enhance the modeline efficiency at the structural design phase.展开更多
Plant root development is strongly affected by nutrient availability. Despite the importance of structure and function of roots in nutrient acquisition,statistical modeling approaches to evaluate dynamic and temporal ...Plant root development is strongly affected by nutrient availability. Despite the importance of structure and function of roots in nutrient acquisition,statistical modeling approaches to evaluate dynamic and temporal modulations of root system architecture in response to nutrient availability have remained as widely open and exploratory areas in root biology. In this study,we developed a statistical modeling approach to investigate modulations of root system architecture in response to nitrogen availability. Mathematical models were designed for quantitative assessment of root growth and root branching phenotypes and their dynamic relationships based on hierarchical con figuration of primary and lateral roots formulating the fishbone-shaped root system architecture in Arabidopsis thaliana. Time-series datasets reporting dynamic changes in root developmental traits on different nitrate or ammonium concentrations were generated for statistical analyses. Regression analyses unraveled key parameters associated with:(i) inhibition of primary root growth under nitrogen limitation or on ammonium;(ii) rapid progression of lateral root emergence in response to ammonium; and(iii) inhibition of lateral root elongation in the presence of excess nitrate or ammonium. This study provides a statistical framework for interpreting dynamic modulation of root system architecture,supported by metaanalysis of datasets displaying morphological responses of roots to diverse nitrogen supplies.展开更多
Model driven architecture(MDA) is an evolutionary step in software development.Model transformation forms a key part of MDA.The transformation from computation independent model(CIM) to platform independent model(PIM)...Model driven architecture(MDA) is an evolutionary step in software development.Model transformation forms a key part of MDA.The transformation from computation independent model(CIM) to platform independent model(PIM) is the first step of the transformation.This paper proposes an approach for this transformation with pattern.In this approach, we take advantage of"reuse"from various standpoints.Feature model is used to describe the requirement of the application.This can help us bring"reuse"into effect at requirement level.Moreover we use pattern to transform CIM to PIM.This can help us bring"reuse"into effect at development level.Meanwhile, pattern was divided into four hierarchies.Different hierarchies of pattern are used to help us utilize reuse at different phase of development.From another standpoint, feature model describes the problem of a domain while pattern describe the problem across domains.This can help us reuse the element in and across domains.Finally, the detailed process of the transformation is given.展开更多
基金supported by the National Natural Science Foundation of China(41927801).
文摘To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from the top-level perspective of multi-service joint warfare.First,an overall planning and analysis method of architecture modeling is proposed with the idea of a bionic analogy for battlefield target intelligence system architecture modeling,which reduces the difficulty of the planning and design process.The method introduces the Department of Defense architecture framework(DoDAF)modeling method,the multi-living agent(MLA)theory modeling method,and other combinations for planning and modeling.A set of rapid planning methods that can be applied to model the architecture of various types of complex systems is formed.Further,the liveness analysis of the battlefield target intelligence system is carried out,and the problems of the existing system are presented from several aspects.And the technical prediction of the development and construction is given,which provides directional ideas for the subsequent research and development of the battlefield target intelligence system.In the end,the proposed architecture model of the battlefield target intelligence system is simulated and verified by applying the colored Petri nets(CPN)simulation software.The analysis demonstrates the reasonable integrity of its logic.
文摘At present,the architecture modeling method of fluvial reservoirs are still developing.Traditional methods usually use grids to characterize architecture interbeds within the reservoir.Due to the thin thickness of this type of the interlayers,the number of the model grids must be greatly expanded.The number of grids in the tens of millions often makes an expensive computation;however,upscaling the model will generate a misleading model.The above confusion is the major reason that restricts the largescale industrialization of fluvial reservoir architecture models in oilfield development and production.Therefore,this paper explores an intelligent architecture modeling method for multilevel fluvial reservoirs based on architecture interface and element.Based on the superpositional relationship of different architectural elements within the fluvial reservoir,this method uses a combination of multilevel interface constraints and non-uniform grid techniques to build a high-resolution 3D geological model for reservoir architecture.Through the grid upscaling technology of heterogeneous architecture elements,different upscaling densities are given to the lateral-accretion bedding and lateral-accretion bodies to simplify the model gridding.This new method greatly reduces the number of model grids while ensuring the accuracy of lateral-accretion bedding models,laying a foundation for large-scale numerical simulation of the subsequent industrialization of the architecture model.This method has been validated in A layer of X oilfield with meandering fluvial channel sands as reservoirs and B layer of Y oilfield with braided river sands as reservoirs.The simulation results show that it has a higher accuracy of production history matching and remaining oil distribution forecast of the targeted sand body.The numerical simulation results show that in the actual development process of oilfield,the injected water will not displace oil in a uniform diffusive manner as traditionally assumed,but in a more complex pattern with oil in upper part of sand body being left behind as residual oil due to the influences of different levels of architecture interfaces.This investigation is important to guiding reservoir evaluation,remaining oil analysis,profile control and potential tapping and well pattern adjustment.
文摘China’s space technology has gradually improved from the early stages’ introduction, absorption and re-innovation based on backward design to independent innovation based on forward design. It is necessary to develop a new approach of systems engineering to improve the quality and efficiency of space systems design considering the large number of original design problems expected in the future. Adopting Model-Based Systems Engineering(MBSE) and Digital Twin method are important development initiatives in the field of modern engineering design. In the initial phase of system design, it is necessary to generate firm system architecture models based on the needs of stakeholders. The quality of the system design in this phase has a great impact on the detailed design and implementation for the subsequent system, and also plays an important role in the performance, development progress and cost of the whole system. Through the collaboration of cross-professional teams, modeling and model execution, comparing the model execution with expected results, MBSE has enabled digital model-level verification and validation before test verification and validation based on physical products, thus improving the design exactness, completeness and greatly reducing design errors or defects. This paper explores the logical ideas behind modeling of system architectures in order to promote the adoption of MBSE in the field of space systems.
文摘Graphics Processing Units(GPUs)are used to accelerate computing-intensive tasks,such as neural networks,data analysis,high-performance computing,etc.In the past decade or so,researchers have done a lot of work on GPU architecture and proposed a variety of theories and methods to study the microarchitectural characteristics of various GPUs.In this study,the GPU serves as a co-processor and works together with the CPU in an embedded real-time system to handle computationally intensive tasks.It models the architecture of the GPU and further considers it based on some excellent work.The SIMT mechanism and Cache-miss situation provide a more detailed analysis of the GPU architecture.In order to verify the GPU architecture model proposed in this article,10 GPU kernel_task and an Nvidia GPU device were used to perform experiments.The experimental results showed that the minimum error between the kernel task execution time predicted by the GPU architecture model proposed in this article and the actual measured kernel task execution time was 3.80%,and the maximum error was 8.30%.
文摘In order to support enterprise integration, a kind of model construct based enterprise model architecture and its modeling approach are studied in this paper. First, the structural makeup and internal relationships of enterprise model architecture are discussed. Then, the concept of reusable model construct (MC) which belongs to the control view and can help to derive other views is proposed. The modeling approach based on model construct consists of three steps, reference model architecture synthesis, enterprise model customization, system design and implementation. According to MC based modeling approach a case study with the background of one-kind-product machinery manufacturing enterprises is illustrated. It is shown that proposal model construct based enterprise model architecture and modeling approach are practical and efficient.
文摘This paper presents an architecture of Computer Integrated Production System in Thermal Power Plant(TPP-CIPS). This architecture is a successful model with a three-dimensional space based on hierarchial dimension,view dimension and life period dimension. Hierarchial view includes Management Information System (MIS), SupervisoryInformation System (SIS) and process automation systems such as Distributed Control System (DCS). View dimensionincludes function view, resource view, organization view and information view. Life period view includes system analyses,system design, system implementation, operation maintenance and system optimization.[
文摘Compressed earth blocks (CEB) are an alternative to cement blocks in the construction of wall masonry. However, the optimal architectural construction methods for adequate thermal comfort for occupants in hot and arid environments are not mastered. This article evaluates the influence of architectural and constructive modes of buildings made of CEB walls and concrete block walls, to optimize and compare their thermal comfort in the hot and dry tropical climate of Ouagadougou, Burkina Faso. Two identical pilot buildings whose envelopes are made of CEB and concrete blocks were monitored for this study. The thermal models of the pilot buildings were implemented in the SketchUp software using an extension of EnergyPlus. The models were empirically validated after calibration against measured thermal data from the buildings. The models were used to do a parametric analysis for optimization of the thermal performances by simulating plaster coatings on the exterior of walls, airtight openings and natural ventilation depending on external weather conditions. The results show that the CEB building displays 7016 hours of discomfort, equivalent to 80.1% of the time, and the concrete building displays 6948 hours of discomfort, equivalent to 79.3% of the time. The optimization by modifications reduced the discomfort to 2918 and 3125 hours respectively;i.e. equivalent to only 33.3% for the CEB building and 35.7% for the concrete building. More study should evaluate thermal optimizations in buildings in real time of usage such as residential buildings commonly used by the local middle class. The use of CEB as a construction material and passive means of improving thermal comfort is a suitable ecological and economical option to replace cementitious material.
基金supported by the National Natural Science Foundation of China(61273198)
文摘Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are gaining higher priority from CSES users when evaluating different modeling methodologies for CSES. Traditional CSES modeling methodologies are either domain-neutral (lack of domain characteristics consideration and limited support for model composability) or domain-oriented (lack of openness and evolvability) and fall short of the three NFRs. Inspired by the concept of architecture in systems engineering and software engineering fields, we extend it into a concept of model architecture for complex simulation systems, and propose a model architecture-oriented modeling methodology in which the model architecture plays a central role in achieving the three NFRs. Various model-driven engineering (MDE) approaches and technologies, including simulation modeling platform (SMP), unified modeling language (UML), domain specific modeling (DSM), eclipse modeling framework (EMF), graphical modeling framework (GMF), and so forth, are applied where possible in representing the CSES model architecture and its components' behaviors from physical and cognitive domain aspects. A prototype CSES system, called weapon effectiveness simulation system (WESS), and a non-trivial air-combat simulation example are presented to demonstrate the methodology.
基金Sponsored by The Special Project for Teaching Reform of Young Teachers of University of Science and Technology Liaoning in 2015 "Reform of Teaching System of the History of Chinese Architecture Based on Practical Personnel Training Mode" (qnjj-2015-09)The Project of the 13~(th) Five-Year Plan for Education and Science of Liaoning Province in 2016 "Research on Innovative and Practical Talents Training Model of Architecture Discipline Based on CDIO Concept"(JG16DB222)
文摘On the basis of a special project for teaching reform, in order to change the boring and dull situation of History of Chinese Architecture in students, ancient architecture model was introduced in the teaching process of the pure history course. Through the interpretation, construction, and exhibition stages,the ability of students in grasping the knowledge of architecture history can be strengthened. Then, from the historical background, physical composition, artistic conception of space, structural system, detailed structure, and architectural evolution, the positive significance of ancient architecture model to the teaching of the History of Chinese Architecture was discussed, in the hope of providing certain theoretical basis for the teaching of the History of Chinese Architecture.
基金Supported by National High Technology Research and Develop Program of China(No.2012AA012301)National Science and Technology Major Project of China(No.2013ZX03006004)
文摘This paper addresses the issue of designing the detailed architectures of Field-Programmable Gate Arrays(FPGAs), which has a great impact on the overall performances of an FPGA in practice. Firstly, a novel FPGA architecture description model is proposed based on an easy-to-use file format known as YAML. This format permits the description of any detailed architecture of hard blocks and channels. Then a general algorithm of building FPGA resource graph is presented. The proposed model is scalable and capable of dealing with detailed architecture design and can be used in FPGA architecture evaluation system which is developed to enable detailed architecture design. Experimental results show that a maximum of 16.36% reduction in total wirelength and a maximum of 9.34% reduction in router effort can be obtained by making very little changes to detailed architectures, which verifies the necessity and effectiveness of the proposed model.
基金Project ofNational "863" Plan of China (No.2004AA119030)
文摘Beyond 3G (B3G) system, the future mobile communication system, is envisioned as a user-centric, open, and convergent information infrastructure capable of providing personalized services. It is extremely important to develop service models and architectures for B3G system. A three-dimension service model is proposed. The dimensions are identified as service support scope, service capability definition, and adaptive feature elements. Then, the hierarchical service architecture for B3G is introduced. The enabling technologies for B3G service architecture are discussed in this paper, such as Virtual Home Environment (VHE), service support environment, service openness, distributed computing, intelligent technology, and profile.
基金This project is supported by Provincial Science & Technology Projoct of Heilongjiang, China (No. GB05A501).
文摘Aiming at the characteristics of modularity and reconfigurable in open architecture computer numerical control (CNC) system, the open architecture CNC system, Harbin Institute of Tech- nology computer numerical control (HITCNC), is researched and manufactured based on the interface standards. The system's external interfaces are coincident with the corresponding international standards, and the internal interfaces follow the open modular architecture controller (OMAC) agreement. In the research and manufacturing process, object-oriented technology is used to ensure the openness of the HITCNC, and static programming is applied in the CNC system according to the idea of modularization disassembly. The HITCNC also actualizes real-time and unreal-time modules adopting real-time dynamical linked library (RTDLL) and component object model (COM). Finite state ma- chine (FSM) is adopted to do dynamically modeling of HITCNC. The complete separation between the software and the hardware is achieved in the HITCNC by applying the SoftSERCANS technique. The application of the above key techniques decreases the programming workload greatly, and uses software programs replacing hardware functions, which offers plenty technique ensures for the openness of HITCNC. Finally, based on the HITCNC, a three-dimensional milling system is established. On the system, series experiments are done to validate the expandability and interchangeability of HITCNC. The results of the experiments show that the established open architecture CNC system HITCNC is correct and feasible, and has good openness.
文摘The 3D digitalization and documentation of ancient Chinese architecture is challenging because of architectural complexity and structural delicacy.To generate complete and detailed models of this architecture,it is better to acquire,process,and fuse multi-source data instead of single-source data.In this paper,we describe our work on 3D digital preservation of ancient Chinese architecture based on multi source data.We first briefly introduce two surveyed ancient Chinese temples,Foguang Temple and Nanchan Temple.Then,we report the data acquisition equipment we used and the multi-source data we acquired.Finally,we provide an overview of several applications we conducted based on the acquired data,including ground and aerial image fusion,image and LiDAR(light detection and ranging)data fusion,and architectural scene surface reconstruction and semantic modeling.We believe that it is necessary to involve multi-source data for the 3D digital preservation of ancient Chinese architecture,and that the work in this paper will serve as a heuristic guideline for the related research communities.
基金Sponsored by the National High Technology Research & Development Program of China(Grant No.2006AA04Z165,2006AA01Z167)the National Key Technology Research & Development Program of China(Grant No.2006BAH02A09)
文摘Aimed at deficiencies in the development and implementation of Enterprise Service Architecture (ESA) software, an ESA software developing mode based on Model Driven Architecture (MDA) is put forward. This mode includes a calculation-independent model ( CIM ), a platform-independent model ( PIM ), a platform-specific model (PSM) and a code level. Based on this mode, the modeling architecture of CIM level is presented. CIM here includes a global model, a process model, an information model and an organization model. The modeling elements of global model, process recta-model, information recta-model and organization meta-model are defined in detail and the relationship between them is described. The reflecting relationship between these models is established as well.
文摘Deep learning (DL) has experienced an exponential development in recent years, with major impact in many medical fields, especially in the field of medical image and, respectively, as a specific task, in the segmentation of the medical image. We aim to create a computer assisted diagnostic method, optimized by the use of deep learning (DL) and validated by a randomized controlled clinical trial, is a highly automated tool for diagnosing and staging precancerous and cervical cancer and thyroid cancers. We aim to design a high-performance deep learning model, combined from convolutional neural network (U-Net)-based architectures, for segmentation of the medical image that is independent of the type of organs/tissues, dimensions or type of image (2D/3D) and to validate the DL model in a randomized, controlled clinical trial. We used as a methodology primarily the analysis of U-Net-based architectures to identify the key elements that we considered important in the design and optimization of the combined DL model, from the U-Net-based architectures, imagined by us. Secondly, we will validate the performance of the DL model through a randomized controlled clinical trial. The DL model designed by us will be a highly automated tool for diagnosing and staging precancers and cervical cancer and thyroid cancers. The combined model we designed takes into account the key features of each of the architectures Overcomplete Convolutional Network Kite-Net (Kite-Net), Attention gate mechanism is an improvement added on convolutional network architecture for fast and precise segmentation of images (Attention U-Net), Harmony Densely Connected Network-Medical image Segmentation (HarDNet-MSEG). In this regard, we will create a comprehensive computer assisted diagnostic methodology validated by a randomized controlled clinical trial. The model will be a highly automated tool for diagnosing and staging precancers and cervical cancer and thyroid cancers. This would help drastically minimize the time and effort that specialists put into analyzing medical images, help to achieve a better therapeutic plan, and can provide a “second opinion” of computer assisted diagnosis.
文摘A series of researches on process planning system architecture is described.The definition of process planning in CIMS, a unified description for work procedure of various CAPP systems,including retneval,variant and generative systems,and the information models about part, manufacturing facility are provided to form scientific basis for process planning automation where a Part Model based on Feature and a Production Environment Model based on Work-Element are to be important supports for implementation of the integrated process planning system.These concepts are applied to the development of a prototype system SIP,which is suitable for box-type mechanical parts and consists of three subsystems:CAD,CAPP and NCP.They are linked together by neutral files as interfaces. This is a successfol implementation for engineering integration.
基金supported by the National Natural Science Foundation of China (Grant No. 60901081)the National High Technology Development Program of China (Grant No. 2007AA10Z229)
文摘The existing research results of virtual modeling of rice plant, however, is far from perfect compared to that of other crops due to its complex structure and growth process. Techniques to visually simulate the architecture of rice plant and its growth process are presented based on the analysis of the morphological characteristics at different stages. Firstly, the simulations of geometrical shape, the bending status and the structural distortion of rice leaves are conducted. Then, by using an improved model for bending deformation, the curved patterns of panicle axis and various types of panicle branches are generated, and the spatial shape of rice panicle is therefore created. Parametric L-system is employed to generate its topological structures, and finite-state automaton is adopted to describe the development of geometrical structures. Finally, the computer visualization of three-dimensional morphologies of rice plant at both organ and individual levels is achieved. The experimental results showed that the proposed methods of modeling the three-dimensional shapes of organs and simulating the growth of rice plant are feasible and effective, and the generated three-dimensional images are realistic.
基金Project(2006BAJ01B01-01) supported by the National Key Technologies R&D Program of China during the 11th Five-Year Plan Period
文摘With the purpose of enhancing effective collaboration between architects and structural engineers in the building design field, an integration tool was developed for supporting information exchange from architectural model to structural model. The PKPM (Bopomofo acronym, a Chinese building design software) structural model and an industry foundation classes (IFC) data model were adopted and analyzed to design the framework of the integration tool. The technique of mixed program languages (C++ and FORTRAN) was applied to developing the tool software, and the connectivity relationships and intersection nodes between the structural elements were optimized and simplified. A case study was implemented to illustrate the method to use the integration tool for information exchange from IFC-format architectural model to PKPM structural model. The results show that the tool can extract the information of architectural model and form a corresponding structural model. The presented method can help to enhance the modeline efficiency at the structural design phase.
基金supported in part by the National Science Foundation(IOS-1444549 to H.T.)the Deutsche Forschungsgemeinschaft(WI1728/13-1 to N.v.W.)Grants-in-aid for Scientific Research from the Ministry of Education,Culture,Sports,Science,and Technology of Japan(T.K.)
文摘Plant root development is strongly affected by nutrient availability. Despite the importance of structure and function of roots in nutrient acquisition,statistical modeling approaches to evaluate dynamic and temporal modulations of root system architecture in response to nutrient availability have remained as widely open and exploratory areas in root biology. In this study,we developed a statistical modeling approach to investigate modulations of root system architecture in response to nitrogen availability. Mathematical models were designed for quantitative assessment of root growth and root branching phenotypes and their dynamic relationships based on hierarchical con figuration of primary and lateral roots formulating the fishbone-shaped root system architecture in Arabidopsis thaliana. Time-series datasets reporting dynamic changes in root developmental traits on different nitrate or ammonium concentrations were generated for statistical analyses. Regression analyses unraveled key parameters associated with:(i) inhibition of primary root growth under nitrogen limitation or on ammonium;(ii) rapid progression of lateral root emergence in response to ammonium; and(iii) inhibition of lateral root elongation in the presence of excess nitrate or ammonium. This study provides a statistical framework for interpreting dynamic modulation of root system architecture,supported by metaanalysis of datasets displaying morphological responses of roots to diverse nitrogen supplies.
基金supported by the National Natural Science Foundation of China (Grant No.601730301)the National BasicResearch Program of China (973 Program) (Grant No.2002CB312001)
文摘Model driven architecture(MDA) is an evolutionary step in software development.Model transformation forms a key part of MDA.The transformation from computation independent model(CIM) to platform independent model(PIM) is the first step of the transformation.This paper proposes an approach for this transformation with pattern.In this approach, we take advantage of"reuse"from various standpoints.Feature model is used to describe the requirement of the application.This can help us bring"reuse"into effect at requirement level.Moreover we use pattern to transform CIM to PIM.This can help us bring"reuse"into effect at development level.Meanwhile, pattern was divided into four hierarchies.Different hierarchies of pattern are used to help us utilize reuse at different phase of development.From another standpoint, feature model describes the problem of a domain while pattern describe the problem across domains.This can help us reuse the element in and across domains.Finally, the detailed process of the transformation is given.