This paper addresses the issue of designing the detailed architectures of Field-Programmable Gate Arrays(FPGAs), which has a great impact on the overall performances of an FPGA in practice. Firstly, a novel FPGA archi...This paper addresses the issue of designing the detailed architectures of Field-Programmable Gate Arrays(FPGAs), which has a great impact on the overall performances of an FPGA in practice. Firstly, a novel FPGA architecture description model is proposed based on an easy-to-use file format known as YAML. This format permits the description of any detailed architecture of hard blocks and channels. Then a general algorithm of building FPGA resource graph is presented. The proposed model is scalable and capable of dealing with detailed architecture design and can be used in FPGA architecture evaluation system which is developed to enable detailed architecture design. Experimental results show that a maximum of 16.36% reduction in total wirelength and a maximum of 9.34% reduction in router effort can be obtained by making very little changes to detailed architectures, which verifies the necessity and effectiveness of the proposed model.展开更多
基金Supported by National High Technology Research and Develop Program of China(No.2012AA012301)National Science and Technology Major Project of China(No.2013ZX03006004)
文摘This paper addresses the issue of designing the detailed architectures of Field-Programmable Gate Arrays(FPGAs), which has a great impact on the overall performances of an FPGA in practice. Firstly, a novel FPGA architecture description model is proposed based on an easy-to-use file format known as YAML. This format permits the description of any detailed architecture of hard blocks and channels. Then a general algorithm of building FPGA resource graph is presented. The proposed model is scalable and capable of dealing with detailed architecture design and can be used in FPGA architecture evaluation system which is developed to enable detailed architecture design. Experimental results show that a maximum of 16.36% reduction in total wirelength and a maximum of 9.34% reduction in router effort can be obtained by making very little changes to detailed architectures, which verifies the necessity and effectiveness of the proposed model.