This paper celebrates Professor Yongqi GAO's significant achievement in the field of interdisciplinary studies within the context of his final research project Arctic Climate Predictions: Pathways to Resilient Sus...This paper celebrates Professor Yongqi GAO's significant achievement in the field of interdisciplinary studies within the context of his final research project Arctic Climate Predictions: Pathways to Resilient Sustainable Societies-ARCPATH(https://www.svs.is/en/projects/finished-projects/arcpath). The disciplines represented in the project are related to climatology, anthropology, marine biology, economics, and the broad spectrum of social-ecological studies. Team members were drawn from the Nordic countries, Russia, China, the United States, and Canada. The project was transdisciplinary as well as interdisciplinary as it included collaboration with local knowledge holders. ARCPATH made significant contributions to Arctic research through an improved understanding of the mechanisms that drive climate variability in the Arctic. In tandem with this research, a combination of historical investigations and social, economic, and marine biological fieldwork was carried out for the project study areas of Iceland, Greenland, Norway, and the surrounding seas, with a focus on the joint use of ocean and sea-ice data as well as social-ecological drivers. ARCPATH was able to provide an improved framework for predicting the near-term variation of Arctic climate on spatial scales relevant to society, as well as evaluating possible related changes in socioeconomic realms. In summary, through the integration of information from several different disciplines and research approaches, ARCPATH served to create new and valuable knowledge on crucial issues, thus providing new pathways to action for Arctic communities.展开更多
The 9th Chinese National Arctic Research Expedition was carried out from 20 July to 26 September 2018. The expedition was successful in undertaking multidisciplinary comprehensive surveys in the fields of physical oce...The 9th Chinese National Arctic Research Expedition was carried out from 20 July to 26 September 2018. The expedition was successful in undertaking multidisciplinary comprehensive surveys in the fields of physical oceanography, marine meteorology, sea ice, marine chemistry,marine biology, marine ecology, geology, and geophysics in the Bering Sea, Chukchi Sea, Chukchi Plateau, Mendeleev Ridge, and Canada Basin. This paper gives an overview of the main achievements of this expedition and highlights the scientific achievements.展开更多
During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which...During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which was initially deployed in the Chukchi Sea.The buoy traversed the Chukchi Sea,Chukchi Abyssal Plain,Mendeleev Ridge,Makarov Basin,and Canada Basin over a period of 632 d.After returning to the Mendeleev Ridge,it continued to drift toward the pole.Overall,the track of the buoy reflected the characteristics of the transpolar drift and Chukchi Slope Current,as well as the inertial flow,cross-ridge surface flow,and even the surface disorganized flow for some time intervals.The results showed that:(1)the transpolar drift mainly occurs in the Chukchi Abyssal Plain,Mendeleev Ridge,and western Canada Basin to the east of the ridge where sea ice concentration is high,and the average northward flow velocity in the region between 79.41°N and 86.32°N was 5.1 cm/s;(2)the average surface velocity of the Chukchi Slope Current was 13.5 cm/s,and while this current moves westward along the continental slope,it also extends northwestward across the continental slope and flows to the deep sea;and(3)when sea ice concentration was less than 50%,the inertial flow was more significant(the maximum observed inertial flow was 26 cm/s,and the radius of the inertia circle was 3.6 km).展开更多
During the 2nd Chinese Arctic Research Expedition, 20 pair of atmospheric samples were collected on the cruising route from Shanghai to Arctic Ocean using NOAA/ESRL flask sampling unit. Mean concentration of CO2 and C...During the 2nd Chinese Arctic Research Expedition, 20 pair of atmospheric samples were collected on the cruising route from Shanghai to Arctic Ocean using NOAA/ESRL flask sampling unit. Mean concentration of CO2 and CH4 were analyzed in different latitude zone from 30°N to 80°N and the distribution characteristics were studied. Mean concentration of CO2 decrease toward high latitude which indicates the uptake effect of CO2 by ocean. Coinciding with the CH4 global distribution character, mean CH4 concentration increase from 45°N to the North Pole region. Regional or local air mass may influence the greenhouse gas concentrations near seashore in the middle latitude (30°N-45°N).展开更多
This paper presents aerosol black carbon (BC) concentrations measured at deck level on board the R/V XUE LONG icebreaker. The vessel cruised the Arctic Ocean carrying an in situ aethalometer during the summers of 20...This paper presents aerosol black carbon (BC) concentrations measured at deck level on board the R/V XUE LONG icebreaker. The vessel cruised the Arctic Ocean carrying an in situ aethalometer during the summers of 2008 and 2010. The courses of the third Chinese National Arctic Research Expedition (3rd CHINARE- Arctic, August 2008) and fourth Chinese National Arctic Research Expedition (4th CHINARE-Aretic, from late July to August 2010) were bounded by 173°W-143°W and 178°E-150°W, with northernmost points 85°25′N and 88°26′N, respectively. Results show low surface BC concentrations over the ocean throughout the courses, with means (standard error) of 6.0 (:t_4.7) ng.m-a for 3rd CHINARE-Arctic, and 8.4(±7.1) ng.m^-3 for 4th CHINARE- Arctic. It is clear that these onboard BC concentrations are similar to reported data from coastal stations in the Arctic region. The latitude-average BC concentration varied from 3.0-26.2 ng.m-3 for 3rd CHINARE-Arctic, to 4.2-20.5 ng-m-a for 4th CHINARE-Arctic. At latitudes higher than 72°N for 3rd CHINARE-Arctic and 75°N for 4th CHINARE-Arctic, BC concentrations were lower and had negligible latitudinal gradients. Analysis indicates that the presence of the Arctic front isolates the lower atmosphere of the high-latitude Arctic Ocean from low-latitude terrestrial transport. This maintains the very low BC concentrations and negligible concentration gradients at high latitudes of the Arctic Ocean during summer. Calculated airmass backward trajectories for the two expeditions show that the Arctic front in 2010 was further north than in 2008, which caused different latitudinal variation of BC concentration in the two years.展开更多
The Antarctic and Arctic are sensitive to global climate change; therefore, they are key regions of global climate change research. This paper, the progress in scientific investigations and research regarding the atmo...The Antarctic and Arctic are sensitive to global climate change; therefore, they are key regions of global climate change research. This paper, the progress in scientific investigations and research regarding the atmosphere in the polar regions over the last 30 years by Chinese scientists is summarized. Primary understanding of the relationship between the polar regions and global change, especially, the variations in time and space in the Antarctic and Arctic regions with respect to climate change is indicated. Operational weather forecasts for investigation of the polar regions have also been established. Moreover, changes in sea ice and their impact on the atmosphere of polar regions have been diagnosed and simulated. Parameterization of the atmospheric boundary layer of different underlying layers and changes in the atmospheric ozone in the polar region has also been experimented. Overall, there has been great progress in studies of the possible impact of changes in the atmospheric environment of polar regions on circulation in East Asia and the climate of China.展开更多
基金the Nord Forsk-funded Nordic Centre of Excellence project (Award 766654) Arctic Climate Predictions: Pathways to Resilient,Sustainable Societies (ARCPATH)National Science Foundation Award 212786 Synthesizing Historical Sea-Ice Records to Constrain and Understand Great Sea-Ice Anomalies (ICEHIST) PI Martin MILES,Co-PI Astrid OGILVIE+12 种基金American-Scandinavian Foundation Award Whales and Ice: Marine-mammal subsistence use in times of famine in Iceland ca.A.D.1600–1900 (ICEWHALE),PI Astrid OGILVIESocial Sciences and Humanities Research Council of Canada Award 435-2018-0194 Northern Knowledge for Resilience,Sustainable Environments and Adaptation in Coastal Communities (NORSEACC),PI Leslie KING,Co-PI,Astrid OGILVIEToward Just,Ethical and Sustainable Arctic Economies,Environments and Societies (JUSTNORTH).EU H2020 (https://www.svs.is/en/ projects/ongoing-projects/justnorth-2020-2023)INTO THE OCEANIC by Elizabeth OGILVIE and Robert PAGE (https://www.intotheo ceanic.org/introduction)Proxy Assimilation for Reconstructing Climate and Improving Model (PARCIM) funded by the Bjerknes Centre for Climate Research,led by Fran?ois COUNILLON,PI Noel KEENLYSIDEAccelerated Arctic and Tibetan Plateau Warming: Processes and Combined Impact on Eurasian Climate (COMBINED),Research Council of Norway (Grant No.328935),Led by Noel KEENLYSIDEArven etter Nansen programme (the Nansen Legacy Project),Research Council of Norway (Grant No.276730),PI Noel KEENLYSIDEBjerknes Climate Prediction Unit,funded by Trond Mohn Foundation (Grant BFS2018TMT01) Centre for Research-based Innovation Climate Futures,Research Council of Norway (Grant No.309562),PIs Noel KEENLYSIDE,Francois COUNILLONDeveloping and Advancing Seasonal Predictability of Arctic Sea Ice (4ICE),Research Council of Norway (Grant No.254765),PI Francois COUNILLONTropical and South Atlantic Climate-Based Marine Ecosystem Prediction for Sustainable Management (TRIATLAS) European Union Horizon 2020 (Grant No.817578),led by Noel KEENLYSIDE,PI Fran?ois COUNILLONImpetus4Change,European Union Horizon Europe (Grant No.101081555),PIs Noel KEENLYSIDE,Fran?ois COUNILLONLaboratory for Climate Predictability,Russian Megagrant funded by Ministry of Science and Higher Education of the Russian Federation (Agreement No.075-15-2021-577),led by Noel KEENLYSIDE,PI Segey GULEVRapid Arctic Environmental Changes: Implications for Well-Being,Resilience and Evolution of Arctic Communities (RACE),Belmont Forum (RCN Grant No.312017),PIs Sergey GULEV and Noel KEENLYSIDE。
文摘This paper celebrates Professor Yongqi GAO's significant achievement in the field of interdisciplinary studies within the context of his final research project Arctic Climate Predictions: Pathways to Resilient Sustainable Societies-ARCPATH(https://www.svs.is/en/projects/finished-projects/arcpath). The disciplines represented in the project are related to climatology, anthropology, marine biology, economics, and the broad spectrum of social-ecological studies. Team members were drawn from the Nordic countries, Russia, China, the United States, and Canada. The project was transdisciplinary as well as interdisciplinary as it included collaboration with local knowledge holders. ARCPATH made significant contributions to Arctic research through an improved understanding of the mechanisms that drive climate variability in the Arctic. In tandem with this research, a combination of historical investigations and social, economic, and marine biological fieldwork was carried out for the project study areas of Iceland, Greenland, Norway, and the surrounding seas, with a focus on the joint use of ocean and sea-ice data as well as social-ecological drivers. ARCPATH was able to provide an improved framework for predicting the near-term variation of Arctic climate on spatial scales relevant to society, as well as evaluating possible related changes in socioeconomic realms. In summary, through the integration of information from several different disciplines and research approaches, ARCPATH served to create new and valuable knowledge on crucial issues, thus providing new pathways to action for Arctic communities.
文摘The 9th Chinese National Arctic Research Expedition was carried out from 20 July to 26 September 2018. The expedition was successful in undertaking multidisciplinary comprehensive surveys in the fields of physical oceanography, marine meteorology, sea ice, marine chemistry,marine biology, marine ecology, geology, and geophysics in the Bering Sea, Chukchi Sea, Chukchi Plateau, Mendeleev Ridge, and Canada Basin. This paper gives an overview of the main achievements of this expedition and highlights the scientific achievements.
基金The Fundamental Research Fund Project of the First Institute of OceanographyMinistry of Natural Resources+1 种基金under contract No.GY022Y07the National Natural Science Foundation of China under contract No.42106232。
文摘During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which was initially deployed in the Chukchi Sea.The buoy traversed the Chukchi Sea,Chukchi Abyssal Plain,Mendeleev Ridge,Makarov Basin,and Canada Basin over a period of 632 d.After returning to the Mendeleev Ridge,it continued to drift toward the pole.Overall,the track of the buoy reflected the characteristics of the transpolar drift and Chukchi Slope Current,as well as the inertial flow,cross-ridge surface flow,and even the surface disorganized flow for some time intervals.The results showed that:(1)the transpolar drift mainly occurs in the Chukchi Abyssal Plain,Mendeleev Ridge,and western Canada Basin to the east of the ridge where sea ice concentration is high,and the average northward flow velocity in the region between 79.41°N and 86.32°N was 5.1 cm/s;(2)the average surface velocity of the Chukchi Slope Current was 13.5 cm/s,and while this current moves westward along the continental slope,it also extends northwestward across the continental slope and flows to the deep sea;and(3)when sea ice concentration was less than 50%,the inertial flow was more significant(the maximum observed inertial flow was 26 cm/s,and the radius of the inertia circle was 3.6 km).
文摘During the 2nd Chinese Arctic Research Expedition, 20 pair of atmospheric samples were collected on the cruising route from Shanghai to Arctic Ocean using NOAA/ESRL flask sampling unit. Mean concentration of CO2 and CH4 were analyzed in different latitude zone from 30°N to 80°N and the distribution characteristics were studied. Mean concentration of CO2 decrease toward high latitude which indicates the uptake effect of CO2 by ocean. Coinciding with the CH4 global distribution character, mean CH4 concentration increase from 45°N to the North Pole region. Regional or local air mass may influence the greenhouse gas concentrations near seashore in the middle latitude (30°N-45°N).
基金supported by the project of the third and fourth Chinese National Arctic Research Expedtions
文摘This paper presents aerosol black carbon (BC) concentrations measured at deck level on board the R/V XUE LONG icebreaker. The vessel cruised the Arctic Ocean carrying an in situ aethalometer during the summers of 2008 and 2010. The courses of the third Chinese National Arctic Research Expedition (3rd CHINARE- Arctic, August 2008) and fourth Chinese National Arctic Research Expedition (4th CHINARE-Aretic, from late July to August 2010) were bounded by 173°W-143°W and 178°E-150°W, with northernmost points 85°25′N and 88°26′N, respectively. Results show low surface BC concentrations over the ocean throughout the courses, with means (standard error) of 6.0 (:t_4.7) ng.m-a for 3rd CHINARE-Arctic, and 8.4(±7.1) ng.m^-3 for 4th CHINARE- Arctic. It is clear that these onboard BC concentrations are similar to reported data from coastal stations in the Arctic region. The latitude-average BC concentration varied from 3.0-26.2 ng.m-3 for 3rd CHINARE-Arctic, to 4.2-20.5 ng-m-a for 4th CHINARE-Arctic. At latitudes higher than 72°N for 3rd CHINARE-Arctic and 75°N for 4th CHINARE-Arctic, BC concentrations were lower and had negligible latitudinal gradients. Analysis indicates that the presence of the Arctic front isolates the lower atmosphere of the high-latitude Arctic Ocean from low-latitude terrestrial transport. This maintains the very low BC concentrations and negligible concentration gradients at high latitudes of the Arctic Ocean during summer. Calculated airmass backward trajectories for the two expeditions show that the Arctic front in 2010 was further north than in 2008, which caused different latitudinal variation of BC concentration in the two years.
基金supported by the National Natural Science Foundation of China (Grant no. 41076132) the National Science and Technology Infrastructure Program of the Ministry of Science and Technology of China (Grant no. 2006BAB18B05)China's Action Plan for the International Polar Year (IPY)
文摘The Antarctic and Arctic are sensitive to global climate change; therefore, they are key regions of global climate change research. This paper, the progress in scientific investigations and research regarding the atmosphere in the polar regions over the last 30 years by Chinese scientists is summarized. Primary understanding of the relationship between the polar regions and global change, especially, the variations in time and space in the Antarctic and Arctic regions with respect to climate change is indicated. Operational weather forecasts for investigation of the polar regions have also been established. Moreover, changes in sea ice and their impact on the atmosphere of polar regions have been diagnosed and simulated. Parameterization of the atmospheric boundary layer of different underlying layers and changes in the atmospheric ozone in the polar region has also been experimented. Overall, there has been great progress in studies of the possible impact of changes in the atmospheric environment of polar regions on circulation in East Asia and the climate of China.