Sea ice,one of the most dominant barriers to Arctic shipping,has decreased dramatically over the past four decades.Arctic maritime transport is hereupon growing in recent years.To produce a long-term assessment of tra...Sea ice,one of the most dominant barriers to Arctic shipping,has decreased dramatically over the past four decades.Arctic maritime transport is hereupon growing in recent years.To produce a long-term assessment of trans-Arctic accessibility,we systematically revisit the daily Arctic navigability with a view to the combined effects of sea ice thickness and concentration throughout the period 1979−2020.The general trends of Navigable Windows(NW)in the Northeast Passage show that the number of navigable days is steadily growing and reached 89±16 days for Open Water(OW)ships and 163±19 days for Polar Class 6(PC6)ships in the 2010s,despite high interannual and interdecadal variability in the NWs.More consecutive NWs have emerged annually for both OW ships and PC6 ships since 2005 because of the faster sea ice retreat.Since the 1980s,the number of simulated Arctic routes has continuously increased,and optimal navigability exists in these years of record-low sea ice extent(e.g.,2012 and 2020).Summertime navigability in the East Siberian and Laptev Seas,on the other hand,varies dramatically due to changing sea ice conditions.This systematic assessment of Arctic navigability provides a reference for better projecting the future trans-Arctic shipping routes.展开更多
The rapid decrease in Arctic sea ice cover and thickness not only has a linkage with extreme weather in the midlatitudes but also brings more opportunities for Arctic shipping routes and polar resource exploration,bot...The rapid decrease in Arctic sea ice cover and thickness not only has a linkage with extreme weather in the midlatitudes but also brings more opportunities for Arctic shipping routes and polar resource exploration,both of which motivate us to further understand causes of sea-ice variations and to obtain more accurate estimates of seaice cover in the future.Here,a novel data-driven method,the causal effect networks algorithm,is applied to identify the direct precursors of September sea-ice extent covering the Northern Sea Route and Transpolar Sea Route at different lead times so that statistical models can be constructed for sea-ice prediction.The whole study area was also divided into two parts:the northern region covered by multiyear ice and the southern region covered by seasonal ice.The forecast models of September sea-ice extent in the whole study area(TSIE)and southern region(SSIE)at lead times of 1–4 months can explain over 65%and 79%of the variances,respectively,but the forecast skill of sea-ice extent in the northern region(NSIE)is limited at a lead time of 1 month.At lead times of 1–4 months,local sea-ice concentration and sea-ice thickness have a larger influence on September TSIE and SSIE than other teleconnection factors.When the lead time is more than 4 months,the surface meridional wind anomaly from northern Europe in the preceding autumn or early winter is dominant for September TSIE variations but is comparable to thermodynamic factors for NSIE and SSIE.We suggest that this study provides a complementary approach for predicting regional sea ice and is helpful in evaluating and improving climate models.展开更多
When designing an arctic cargo ship, it is necessary to consider multiple stochastic factors. This paper evaluates the merits of a simulation-based probabilistic design method specifically developed to deal with this...When designing an arctic cargo ship, it is necessary to consider multiple stochastic factors. This paper evaluates the merits of a simulation-based probabilistic design method specifically developed to deal with this challenge. The outcome of the paper indicates that the incorporation of simulations and probabilistic design parameters into the design process enables more informed design decisions. For instance, it enables the assessment of the stochastic transport capacity of an arctic ship, as well as of its long-term ice exposure that can be used to determine an appropriate level of ice-strengthening. The outcome of the paper also indicates that significant gains in transport system cost-efficiency can be obtained by extending the boundaries of the design task beyond the individual vessel. In the case of industrial shipping, this allows for instance the consideration of port-based cargo storage facilities allowing for temporary shortages in transport capacity and thus a reduction in the required fleet size / ship capacity.展开更多
This paper investigates the sources of goods being shipped through the Arctic passages, and trade generated in the Arc- tic, including oil and gas exploitation. Furthermore, it assesses the present situation for marit...This paper investigates the sources of goods being shipped through the Arctic passages, and trade generated in the Arc- tic, including oil and gas exploitation. Furthermore, it assesses the present situation for maritime cargo shipped from the Far East to Northwestern Europe and North America. Two main types of cargo are predicted to pass through the Arctic passages in the future. First, about 10 million t of liquefied natural gas will be delivered from Russia and the Nordic Arctic to the Far East by 2030. Second, there will be two-way trade flow of containerized cargo from the Far East to Europe and the United States through the North- east, Central and Northwest Passages. This will relieve pressure on present routes from the Far East to Northwestern Europe and North America. If Arctic navigation is technically possible in all seasons and shipping costs fall to those of ordinary ships, then assuming an equal share of shipping volume with the traditional canal routes, the maximum container freight passing through the Arctic passages by 2030 will be approximately 17.43 million TEUs (Twenty-foot Equivalent Units) per year, which is 85% of the volume transported on traditional canal routes in 2011. We conclude that there will be large-scale gas transportation through the Northeast Passage in the near future, and transit shipping across the Arctic will focus more on container transportation. The differences in shipping costs between Arctic routes and traditional canal routes are also compared.展开更多
Collocated data of the moderate resolution imaging spectroradiometer (MO<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS) Collection 6.1 aerosol o...Collocated data of the moderate resolution imaging spectroradiometer (MO<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS) Collection 6.1 aerosol optical depths (AOD) at 3 km × 3 km north of 59.9</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;">N over ocean were assessed at 550 nm by aerosol robotic network (AERONET) data from coastal sites and marine aerosol network (MAN) data from vessels during June to October 2006 to 2018. Typically, MODIS AOD w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> higher at low and lower at high values than the AERONET AOD. Discrepancies were largest for sites where the Earth’s surface around the site is very heterogeneous (Canadian Archipelago, coast of Greenland). Due to the higher likelihood for sea-ice, MAN and MODIS AOD differed stronger west of Greenland and over the Beaufort Sea than at location in the Greenland and Norwegian Seas and Atlantic. MODIS AOD well captured the inter-seasonal variability found in the AERONET AOD data (R = 0.933). At all sites, MO</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS and AERONET AOD agreement improved as time progressed in the shipping season, hinting at errors in sea-ice vs. open water classification. Overall 75.3% of the MODIS AOD data fell within the limits of the error envelops of the AERONET/MAN AOD data with MAN ranging between 87.5% and 100%. Changes in both MODIS and AERONET mean AOD between two periods of same length (2006-2011, 2013-2018) were explainable by changes in emissions for all sites</span><span style="font-family:Verdana;">.</span>展开更多
The Arctic is rapidly transforming into a navigable ocean because of global warming.The retreat of ice extent and widened marginal ice zone(MIZ)in the Arctic made it possible for non-icebreaking commercial vessels to ...The Arctic is rapidly transforming into a navigable ocean because of global warming.The retreat of ice extent and widened marginal ice zone(MIZ)in the Arctic made it possible for non-icebreaking commercial vessels to sail into Arctic waters where ice floes of various concentrations and thicknesses exist.The main objective of this work is to estimate the performance of a non-icebreaking cargo ship that sails in the Arctic marginal ice zone.Different numerical approaches are utilized to calculate ice-induced resistance and compared with those proposed in empirical formulas.The comparison shows that the resistances predicted by the two numerical tools differ obviously and are in general smaller in comparison with the ones calculated from the empirical formulas under lower ice concentrations.The total resistances are further calculated to predict the required propulsion powers for the case study vessel to enable navigation under severe ice conditions.This work highlights the significance of developing new and more sophisticated tools for estimation of ship’s ice performance in MIZ,which is the prerequisite to enable non-icebreaking cargo fleet to utilize the Arctic shipping lane.展开更多
基金the National Natural Science Foundation of China(No.41922044,41941009)the Guangdong Basic and Applied Basic Research Foundation(No.2020B1515020025)+1 种基金the fundamental research funds for the Norges Forskningsråd(No.328886)C Min acknowledges support from the China Scholarship Council(No.202006380131).
文摘Sea ice,one of the most dominant barriers to Arctic shipping,has decreased dramatically over the past four decades.Arctic maritime transport is hereupon growing in recent years.To produce a long-term assessment of trans-Arctic accessibility,we systematically revisit the daily Arctic navigability with a view to the combined effects of sea ice thickness and concentration throughout the period 1979−2020.The general trends of Navigable Windows(NW)in the Northeast Passage show that the number of navigable days is steadily growing and reached 89±16 days for Open Water(OW)ships and 163±19 days for Polar Class 6(PC6)ships in the 2010s,despite high interannual and interdecadal variability in the NWs.More consecutive NWs have emerged annually for both OW ships and PC6 ships since 2005 because of the faster sea ice retreat.Since the 1980s,the number of simulated Arctic routes has continuously increased,and optimal navigability exists in these years of record-low sea ice extent(e.g.,2012 and 2020).Summertime navigability in the East Siberian and Laptev Seas,on the other hand,varies dramatically due to changing sea ice conditions.This systematic assessment of Arctic navigability provides a reference for better projecting the future trans-Arctic shipping routes.
基金The National Key Research and Development Program of China under contract Nos 2016YFF0202705 and2018YFA0605904the Joint Institute for the Study of the Atmosphere and Ocean(JISAO)under contract NOAA Cooperative Agreement NA15OAR4320063,contribution No.2019-1044,and PMEL contribution No.5052。
文摘The rapid decrease in Arctic sea ice cover and thickness not only has a linkage with extreme weather in the midlatitudes but also brings more opportunities for Arctic shipping routes and polar resource exploration,both of which motivate us to further understand causes of sea-ice variations and to obtain more accurate estimates of seaice cover in the future.Here,a novel data-driven method,the causal effect networks algorithm,is applied to identify the direct precursors of September sea-ice extent covering the Northern Sea Route and Transpolar Sea Route at different lead times so that statistical models can be constructed for sea-ice prediction.The whole study area was also divided into two parts:the northern region covered by multiyear ice and the southern region covered by seasonal ice.The forecast models of September sea-ice extent in the whole study area(TSIE)and southern region(SSIE)at lead times of 1–4 months can explain over 65%and 79%of the variances,respectively,but the forecast skill of sea-ice extent in the northern region(NSIE)is limited at a lead time of 1 month.At lead times of 1–4 months,local sea-ice concentration and sea-ice thickness have a larger influence on September TSIE and SSIE than other teleconnection factors.When the lead time is more than 4 months,the surface meridional wind anomaly from northern Europe in the preceding autumn or early winter is dominant for September TSIE variations but is comparable to thermodynamic factors for NSIE and SSIE.We suggest that this study provides a complementary approach for predicting regional sea ice and is helpful in evaluating and improving climate models.
基金Supported by the MAROFF Competence Building ProjectFunded by the Research Council of Norway on "Holistic Risk-Based Design For Sustainable Arctic Sea Transport"
文摘When designing an arctic cargo ship, it is necessary to consider multiple stochastic factors. This paper evaluates the merits of a simulation-based probabilistic design method specifically developed to deal with this challenge. The outcome of the paper indicates that the incorporation of simulations and probabilistic design parameters into the design process enables more informed design decisions. For instance, it enables the assessment of the stochastic transport capacity of an arctic ship, as well as of its long-term ice exposure that can be used to determine an appropriate level of ice-strengthening. The outcome of the paper also indicates that significant gains in transport system cost-efficiency can be obtained by extending the boundaries of the design task beyond the individual vessel. In the case of industrial shipping, this allows for instance the consideration of port-based cargo storage facilities allowing for temporary shortages in transport capacity and thus a reduction in the required fleet size / ship capacity.
基金supported by the Ocean Public Welfare Scientific Research Project of China"Seaworthy Evaluation of the Arctic Sea Route,Research and Demonstration of Channel Forecast(Grant no.201205007-6)" the Chinese Polar Environment Comprehensive Investigation & Assessment Programmes(Grant no.CHINARE2013-04-05-01)
文摘This paper investigates the sources of goods being shipped through the Arctic passages, and trade generated in the Arc- tic, including oil and gas exploitation. Furthermore, it assesses the present situation for maritime cargo shipped from the Far East to Northwestern Europe and North America. Two main types of cargo are predicted to pass through the Arctic passages in the future. First, about 10 million t of liquefied natural gas will be delivered from Russia and the Nordic Arctic to the Far East by 2030. Second, there will be two-way trade flow of containerized cargo from the Far East to Europe and the United States through the North- east, Central and Northwest Passages. This will relieve pressure on present routes from the Far East to Northwestern Europe and North America. If Arctic navigation is technically possible in all seasons and shipping costs fall to those of ordinary ships, then assuming an equal share of shipping volume with the traditional canal routes, the maximum container freight passing through the Arctic passages by 2030 will be approximately 17.43 million TEUs (Twenty-foot Equivalent Units) per year, which is 85% of the volume transported on traditional canal routes in 2011. We conclude that there will be large-scale gas transportation through the Northeast Passage in the near future, and transit shipping across the Arctic will focus more on container transportation. The differences in shipping costs between Arctic routes and traditional canal routes are also compared.
文摘Collocated data of the moderate resolution imaging spectroradiometer (MO<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS) Collection 6.1 aerosol optical depths (AOD) at 3 km × 3 km north of 59.9</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;">N over ocean were assessed at 550 nm by aerosol robotic network (AERONET) data from coastal sites and marine aerosol network (MAN) data from vessels during June to October 2006 to 2018. Typically, MODIS AOD w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> higher at low and lower at high values than the AERONET AOD. Discrepancies were largest for sites where the Earth’s surface around the site is very heterogeneous (Canadian Archipelago, coast of Greenland). Due to the higher likelihood for sea-ice, MAN and MODIS AOD differed stronger west of Greenland and over the Beaufort Sea than at location in the Greenland and Norwegian Seas and Atlantic. MODIS AOD well captured the inter-seasonal variability found in the AERONET AOD data (R = 0.933). At all sites, MO</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS and AERONET AOD agreement improved as time progressed in the shipping season, hinting at errors in sea-ice vs. open water classification. Overall 75.3% of the MODIS AOD data fell within the limits of the error envelops of the AERONET/MAN AOD data with MAN ranging between 87.5% and 100%. Changes in both MODIS and AERONET mean AOD between two periods of same length (2006-2011, 2013-2018) were explainable by changes in emissions for all sites</span><span style="font-family:Verdana;">.</span>
基金supported by the National Natural Science Foundation of China(Grant No.2017YFE0111400).
文摘The Arctic is rapidly transforming into a navigable ocean because of global warming.The retreat of ice extent and widened marginal ice zone(MIZ)in the Arctic made it possible for non-icebreaking commercial vessels to sail into Arctic waters where ice floes of various concentrations and thicknesses exist.The main objective of this work is to estimate the performance of a non-icebreaking cargo ship that sails in the Arctic marginal ice zone.Different numerical approaches are utilized to calculate ice-induced resistance and compared with those proposed in empirical formulas.The comparison shows that the resistances predicted by the two numerical tools differ obviously and are in general smaller in comparison with the ones calculated from the empirical formulas under lower ice concentrations.The total resistances are further calculated to predict the required propulsion powers for the case study vessel to enable navigation under severe ice conditions.This work highlights the significance of developing new and more sophisticated tools for estimation of ship’s ice performance in MIZ,which is the prerequisite to enable non-icebreaking cargo fleet to utilize the Arctic shipping lane.