At 13:46 on March 11, 2011(Beijing time), an earthquake of Mw=9.0 occurred in Japan. By comparing the tsunami data from Guanhekou marine station with other tsunami wave observation gathered from southeast coastal a...At 13:46 on March 11, 2011(Beijing time), an earthquake of Mw=9.0 occurred in Japan. By comparing the tsunami data from Guanhekou marine station with other tsunami wave observation gathered from southeast coastal area of China, it was evident that, only in Guanhekou, the position of the maximum wave height appeared in the middle part rather than in the front of the tsunami wave train. A numerical model of tsunami propagation based on 2-D nonlinear shallow water equations was built to study the impact range and main causes of the special tsunami waveform discovered in Jiangsu coastal area. The results showed that nearly three-quarters of the Jiangsu coastal area, mainly comprised the part north of the radial sand ridges, reached its maximum tsunami wave height in the middle part of the wave train. The main cause of the special waveform was the special underwater topography condition of the Yellow Sea and the East China Sea area, which influenced the tsunami propagation and waveform significantly. Although land boundary reflection brought an effect on the position of the maximum wave height to a certain extent, as the limits of the incident waveform and distances between the observation points and shore, it was not the dominant influence factor of the special waveform. Coriolis force's impact on the tsunami waves was so weak that it was not the main cause for the special phenomenon in Jiangsu coastal area. The study reminds us that the most destructive wave might not appear in the first one in tsunami wave train.展开更多
The wide area precise positioning system(WAPPS)is a high-precision positioning system based on a global navigation satellite system.Using a GEO satellite or a communication network,it provides users,in its service are...The wide area precise positioning system(WAPPS)is a high-precision positioning system based on a global navigation satellite system.Using a GEO satellite or a communication network,it provides users,in its service area,with real-time satellite orbit,clock,and other corrections.Users can achieve centimeter-level static positioning or decimeter-level kinematic positioning by precise point positioning.With the demands for applications of both high-precision and safety of life in real time,WAPPS is facing urgent needs to improve its service integrity.This study presents a real-time integrity monitoring approach for WAPPS.Using dual-frequency ionosphere-free corrections of GPS and BDS,along with monitor station data,related error models are established and the integrity monitoring is achieved,based on the analysis of satellite corrected residuals.In addition,satellite faults are simulated for performance verification.The results show that the algorithm can monitor both step and drift faults effectively and alert users in time.展开更多
Vehicle positioning is critical for inter-vehicle communication, navigation, vehicle monitoring and tracking. They are regarded as the core technology ensuring safety in everyday-driving. This paper proposes an enhanc...Vehicle positioning is critical for inter-vehicle communication, navigation, vehicle monitoring and tracking. They are regarded as the core technology ensuring safety in everyday-driving. This paper proposes an enhanced vehicle ego-localization method based on streetscape image database. It is most useful in the global positioning system(GPS) blind area. Firstly, a database is built by collecting streetscape images, extracting dominant color feature and detecting speeded up robust feature(SURF) points. Secondly, an image that the vehicle shoots at one point is analyzed to find a matching image in the database by dynamic programming(DP)matching. According to the image similarity, several images with higher probabilities are selected to realize coarse positioning. Finally, different weights are set to the coordinates of the shooting location with the maximum similarity and its 8 neighborhoods according to the number of matching points, and then interpolating calculation is applied to complete accurate positioning. Experimental results show that the accuracy of this study is less than 1.5 m and its running time is about 3.6 s. These are basically in line with the practical need. The described system has an advantage of low cost, high reliability and strong resistance to signal interference, so it has a better practical value as compared with visual odometry(VO) and radio frequency identification(RFID) based approach for vehicle positioning in the case of GPS not working.展开更多
This work is about the development of a super low noise amplifier with minimum power consumption and high gain for several wireless applications.The amplifier operates at frequency bands of 0.9-2.4 GHz and can be used...This work is about the development of a super low noise amplifier with minimum power consumption and high gain for several wireless applications.The amplifier operates at frequency bands of 0.9-2.4 GHz and can be used in many applications like Wireless local area network(WLAN),WiFi,Bluetooth,ZigBee and Global System for mobile communications(GSM).This new design can be employed for the IEEE 802.15.4 standard in industrial,scientific and medical(ISM) Band.The enhancement mode pseudomorphic high electron mobility transistor PHEMT is used here due to its high linearity,better performance and less noisy operation.The common source inductive degeneration method is employed here to enhance the gain of amplifier.The amplifier produces a gain of more than 17 dB and noise figure of about 0.5 dB.The lower values of S11 and S22 reflect the accuracy of impedance matching network placed at the input and output sides of amplifier.Agilent Advance Design System(ADS) is used for the design and simulation purpose.Further the layout of design is developed on the FR4 substrate.展开更多
The recent plethora of GPS observations compensates for the 20-year-old lack in vertical displacement data for the Guanzhong region. The 2001—2007 three-dimensional(3D) crustal deformation data suggest regional mov...The recent plethora of GPS observations compensates for the 20-year-old lack in vertical displacement data for the Guanzhong region. The 2001—2007 three-dimensional(3D) crustal deformation data suggest regional movement with a horizontal velocity of 3—7 mm/a,predominantly from SSE in the west to SE in the east, and vertical inherited movement with velocity of -7 mm/a to 4 mm/a. After the Wenchuan earthquake, the GPS data suggest that the effect of the earthquake on the regional deformation is greater in the west than the east.The horizontal displacement increased during 2007—2008; however, the reverse was observed in 2008—2009. The vertical displacement in the western part of the region increased in 2008 and has been gradually returning to normal since 2009; however, in the eastern part,the effect of the earthquake remains.展开更多
基金financially supported by the Fundamental Research Funds for the Central Universities,Hohai University(Grant No.2011B06014)the Fundamental Research Funds for the Central Public Welfare Research Institutes,Nanjing Hydraulic Research Institute(Grant No.YN912001)+2 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK2012411)the National Science & Technology Pillar Program(Grant No.2012BAB03B01)the Cultivation of Jiangsu Province Graduate Innovation Project(Grant No.KYZZ_0151)
文摘At 13:46 on March 11, 2011(Beijing time), an earthquake of Mw=9.0 occurred in Japan. By comparing the tsunami data from Guanhekou marine station with other tsunami wave observation gathered from southeast coastal area of China, it was evident that, only in Guanhekou, the position of the maximum wave height appeared in the middle part rather than in the front of the tsunami wave train. A numerical model of tsunami propagation based on 2-D nonlinear shallow water equations was built to study the impact range and main causes of the special tsunami waveform discovered in Jiangsu coastal area. The results showed that nearly three-quarters of the Jiangsu coastal area, mainly comprised the part north of the radial sand ridges, reached its maximum tsunami wave height in the middle part of the wave train. The main cause of the special waveform was the special underwater topography condition of the Yellow Sea and the East China Sea area, which influenced the tsunami propagation and waveform significantly. Although land boundary reflection brought an effect on the position of the maximum wave height to a certain extent, as the limits of the incident waveform and distances between the observation points and shore, it was not the dominant influence factor of the special waveform. Coriolis force's impact on the tsunami waves was so weak that it was not the main cause for the special phenomenon in Jiangsu coastal area. The study reminds us that the most destructive wave might not appear in the first one in tsunami wave train.
文摘The wide area precise positioning system(WAPPS)is a high-precision positioning system based on a global navigation satellite system.Using a GEO satellite or a communication network,it provides users,in its service area,with real-time satellite orbit,clock,and other corrections.Users can achieve centimeter-level static positioning or decimeter-level kinematic positioning by precise point positioning.With the demands for applications of both high-precision and safety of life in real time,WAPPS is facing urgent needs to improve its service integrity.This study presents a real-time integrity monitoring approach for WAPPS.Using dual-frequency ionosphere-free corrections of GPS and BDS,along with monitor station data,related error models are established and the integrity monitoring is achieved,based on the analysis of satellite corrected residuals.In addition,satellite faults are simulated for performance verification.The results show that the algorithm can monitor both step and drift faults effectively and alert users in time.
基金the National Natural Science Foundation of China(No.51278058)111 Project on Information of Vehicle-Infrastructure Sensing and ITS(No.B14043)+1 种基金the Natural Science Basic Research Program of Shaanxi Province,China(No.2018JQ6091)the Special Fund for Basic Scientific Research of Central Colleges,Chang’an University in China(Nos.310824150012,310824130248,310824141003,310824153103,310824151033,310824164004,300102328204 and 2014G1241046)
文摘Vehicle positioning is critical for inter-vehicle communication, navigation, vehicle monitoring and tracking. They are regarded as the core technology ensuring safety in everyday-driving. This paper proposes an enhanced vehicle ego-localization method based on streetscape image database. It is most useful in the global positioning system(GPS) blind area. Firstly, a database is built by collecting streetscape images, extracting dominant color feature and detecting speeded up robust feature(SURF) points. Secondly, an image that the vehicle shoots at one point is analyzed to find a matching image in the database by dynamic programming(DP)matching. According to the image similarity, several images with higher probabilities are selected to realize coarse positioning. Finally, different weights are set to the coordinates of the shooting location with the maximum similarity and its 8 neighborhoods according to the number of matching points, and then interpolating calculation is applied to complete accurate positioning. Experimental results show that the accuracy of this study is less than 1.5 m and its running time is about 3.6 s. These are basically in line with the practical need. The described system has an advantage of low cost, high reliability and strong resistance to signal interference, so it has a better practical value as compared with visual odometry(VO) and radio frequency identification(RFID) based approach for vehicle positioning in the case of GPS not working.
基金supported by the National Natural Science Foundation of China(Grant no. 61202399,61571063)
文摘This work is about the development of a super low noise amplifier with minimum power consumption and high gain for several wireless applications.The amplifier operates at frequency bands of 0.9-2.4 GHz and can be used in many applications like Wireless local area network(WLAN),WiFi,Bluetooth,ZigBee and Global System for mobile communications(GSM).This new design can be employed for the IEEE 802.15.4 standard in industrial,scientific and medical(ISM) Band.The enhancement mode pseudomorphic high electron mobility transistor PHEMT is used here due to its high linearity,better performance and less noisy operation.The common source inductive degeneration method is employed here to enhance the gain of amplifier.The amplifier produces a gain of more than 17 dB and noise figure of about 0.5 dB.The lower values of S11 and S22 reflect the accuracy of impedance matching network placed at the input and output sides of amplifier.Agilent Advance Design System(ADS) is used for the design and simulation purpose.Further the layout of design is developed on the FR4 substrate.
基金supported by the Shanxi Science and Technology Research and Development program(2012SF2-17)National Nature Science Foundation of China(41174083)
文摘The recent plethora of GPS observations compensates for the 20-year-old lack in vertical displacement data for the Guanzhong region. The 2001—2007 three-dimensional(3D) crustal deformation data suggest regional movement with a horizontal velocity of 3—7 mm/a,predominantly from SSE in the west to SE in the east, and vertical inherited movement with velocity of -7 mm/a to 4 mm/a. After the Wenchuan earthquake, the GPS data suggest that the effect of the earthquake on the regional deformation is greater in the west than the east.The horizontal displacement increased during 2007—2008; however, the reverse was observed in 2008—2009. The vertical displacement in the western part of the region increased in 2008 and has been gradually returning to normal since 2009; however, in the eastern part,the effect of the earthquake remains.