This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou Ci...This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou City in China,its eastern region(Ganzhou East),and Ruijin County in Ganzhou East were chosen.Different mapping unit scales are represented by grid units with spatial resolution of 30 and 60 m,as well as slope units that were extracted by multi-scale segmentation method.The 3855 landslide locations and 21 typical environmental factors in Ganzhou City are first determined to create spatial datasets with input-outputs.Then,landslide susceptibility maps(LSMs)of Ganzhou City,Ganzhou East and Ruijin County are pro-duced using a support vector machine(SVM)and random forest(RF),respectively.The LSMs of the above three regions are then extracted by mask from the LSM of Ganzhou City,along with the LSMs of Ruijin County from Ganzhou East.Additionally,LSMs of Ruijin at various mapping unit scales are generated in accordance.Accuracy and landslide suscepti-bility indexes(LSIs)distribution are used to express LSP uncertainties.The LSP uncertainties under grid units significantly decrease as study area scales decrease from Ganzhou City,Ganzhou East to Ruijin County,whereas those under slope units are less affected by study area scales.Of course,attentions should also be paid to the broader representativeness of large study areas.The LSP accuracy of slope units increases by about 6%–10%compared with those under grid units with 30 m and 60 m resolution in the same study area's scale.The significance of environmental factors exhibits an averaging trend as study area scale increases from small to large.The importance of environmental factors varies greatly with the 60 m grid unit,but it tends to be consistent to some extent in the 30 m grid unit and the slope unit.展开更多
The method for simulating the temporal and spatial distribution patterns of leaf area index (LAI) and biomass at landscape scale using remote sensing images and surface data was discussed in this paper. The procedure...The method for simulating the temporal and spatial distribution patterns of leaf area index (LAI) and biomass at landscape scale using remote sensing images and surface data was discussed in this paper. The procedure was: (1) annual maximum normalized difference vegetation index (NDVI) over the landscape was calculated from TM images; (2) the relationship model between NDVI and LAI was built and annual maximum LAI over the landscape was simulated; (3) the relationship models between LAI and biomass were built and annual branch, stem, root and maximum leaf biomass over the landscape were simulated; (4) spatial distribution patterns of leaf biomass and LAI in different periods all the year round were obtained. The simulation was based on spatial analysis module GRID in ArcInfo software. The method is also a kind of scaling method from patch scale to landscape scale. A case study of Changbai Mountain Nature Reserve was dissertated. Analysis and primary validation were carried out to the simulated LAI and biomass for the major vegetation types in the Changbai Mountain in 1995.展开更多
In India, with ever increasing population and stress on natural resources, especially water, rejuvenation of rainwater harvesting (RWH) technique which was forgotten over the days is becoming very essential. Large num...In India, with ever increasing population and stress on natural resources, especially water, rejuvenation of rainwater harvesting (RWH) technique which was forgotten over the days is becoming very essential. Large number of RWH methods that are available in the literature are demand specific and site specific, since RWH system depends on the topography, land use, land cover, rainfall and demand pattern. Thus for each and every case, a detailed evaluation of RWH structures is required for implementation, including the analy-sis of hydrology, topography and other aspects like site availability and economics, however a common methodology could be evolved. The present study was aimed at evaluation of various RWH techniques in order to identify the most appropriate technique suitable for a large scale industrial area to meet its daily wa-ter demand. An attempt is made to determine the volume of water to be stored using mass balance method, Ripple diagram method, analytical method, and sequent peak algorithm method. Based on various satisfying criteria, analytical hierarchy process (AHP) is employed to determine the most appropriate type of RWH method and required number of RWH structures in the study area. If economy alone is considered along with hydrological and site specific parameters, recharging the aquifer has resulted as a better choice. However other criteria namely risk, satisfaction in obtaining required volume of water for immediate utilization etc. has resulted in opting for concrete storage structures method. From the results it is found that AHP, if used with all possible criteria can result in a better tool for evaluation of RWH methods and structures. This RWH structures not only meets the demand but saves transportation cost of water and reduces the dependability of the industry on irrigation reservoir. Besides monetary benefits it is hoped that the micro environment inside the industry will improve due to the cooling effect of the stored water.展开更多
At the background of urban and rural integration,this paper analyzed and discussed factors restricting large-scale farmland operation in China's hilly areas from the qualitative perspective. It recognized large-sc...At the background of urban and rural integration,this paper analyzed and discussed factors restricting large-scale farmland operation in China's hilly areas from the qualitative perspective. It recognized large-scale farmland operation on the basis of the long tail theory. Finally,it came up with recommendations for developing large-scale farmland operation in hilly areas.展开更多
In this paper, through a multi-scale separation of the aeromagnetic anomaly by wavelet transform technique, we reprocessed the aeromagnetic data collected 20 years ago in Beijing area and analyzed the aeromagnetic ano...In this paper, through a multi-scale separation of the aeromagnetic anomaly by wavelet transform technique, we reprocessed the aeromagnetic data collected 20 years ago in Beijing area and analyzed the aeromagnetic anomaly qualitatively, integrating geological structure features in the area. In particular, we studied the spatial distributions of the two main faults called Shunyi-Liangxiang fault and Banqiao-Babaoshan-Tongxian fault, which have cut and gone through the central Beijing area striking in NE and EW directions, respectively. The influences of these two faults on the earthquakes have also been discussed briefly.展开更多
[Objective] The research aimed to study the meso-scale characteristics of a hail process in Linyi area. [Method] By comprehensively using MICAPS conventional observation data, automatic encryption ground station, MM5 ...[Objective] The research aimed to study the meso-scale characteristics of a hail process in Linyi area. [Method] By comprehensively using MICAPS conventional observation data, automatic encryption ground station, MM5 model product and Doppler weather radar data, a strong convective hail weather process which happened in Shandong Peninsula and southeast of Shandong on May 30, 2010 was analyzed. The circulation background and physical mechanism of strong convection weather occurrence, the features of meso- and micro-scale systems were discussed. Some occurrence and development rules of such weather were found. [Result] The strong convective weather was mainly affected by the cold vortex and translot. The high-altitude northwest airflow, low-level southwest airflow, dry and cold air at the high layer, warm and wet air at the low layer, forward-tilting trough caused the strong convective weather. The radar echo analysis showed that the radar echo in the process belonged to the typical multi-monomer windstorm echo, and the strong echo zone was in the forefront of echo. When the convection development was the strongest, the echo intensity reached 65 dBz, and the echo top height surpassed 11 km. As the development of windstorm monomer, the big-value zone of vertical liquid water content product had the jumping formation and disappearance. Moreover, there was obvious weak echo zone. The windstorm monomer moved to the southeast direction as the precipitation system. In the right front of monomer moving direction, there was hook echo feature. The evolution characteristics of radial speed field at the different elevation angles before and after the hail weather occurrence were analyzed. It was found that the radial speed field had some premonitory variations before the hail weather occurrence. Doppler radar product was used to improve the initial field of MM5 model, which could improve the forecast effect in the certain degree and the accuracy of short-time forecast and nowcasting. [Conclusion] The research accumulated the experience for the short-term forecast and nowcasting work of strong convective weather in future.展开更多
Understanding how the transpiration of this vegetation type responds to environmental stress is important for determining the wa-ter-balance dynamics of the riparian ecosystem threatened by groundwater depletion. Tran...Understanding how the transpiration of this vegetation type responds to environmental stress is important for determining the wa-ter-balance dynamics of the riparian ecosystem threatened by groundwater depletion. Transpiration and sap flow were measured using the heat-pulse technique. The results were then projected up to the stand level to investigate the stand’s water-use in relation to climate forcing in the desert riparian forest in an extreme arid region. This study took place from April through October 2003 and from May through October 2004. The experimental site was selected in the Populus euphratica Forest Reserve (101o10' E, 41o59' N) in Ejina county, in the lower Heihe River basin, China. The sapwood area was used as a scalar to extrapolate the stand-water consumption from the whole trees’ water consumption measured by the heat-pulse velocity recorder (HPVR). Scale transferring from a series of individual trees to a stand was done according to the existing natural variations between trees under given environmental conditions. The application of the biometric parameters available from individual tree and stand levels was proved suitable for this purpose. A significant correlation between the sapwood area and tree diameter at breast height (DBH) was found. The prediction model is well fitted by the power model. On the basis of the prediction model, the sapwood area can be cal-culated by DBH. The sap-flow density can then be used to extrapolate the stand-water use by means of a series of mathematical models.展开更多
Landslides produce large quantities of sediment deposits and reduce reservoir life. This study investigated landslides at the Shihmen Reservoir basin in Taiwan that were induced by Typhoon Sinlaku and Typhoon Jangmi i...Landslides produce large quantities of sediment deposits and reduce reservoir life. This study investigated landslides at the Shihmen Reservoir basin in Taiwan that were induced by Typhoon Sinlaku and Typhoon Jangmi in 2008. We formulate scaling relationships between landslide erosion volume and area and conclude that sediment budget can be estimated based on the easier-todetermine landslide erosion area. The methodologies applied for the investigation were geomorphological analysis through 5 m × 5 m digital terrain models(DTMs) of the basin created before and after the landslide events and spatial analysis through a geographic information system. The erosion area and volume of landslides were measured through the subtraction of DTMs produced before and after the events. Statistical analysis revealed that the landslide erosion frequency–magnitude distribution exhibited power-law behaviors with a scaling exponent of 2.15 for the frequency–area distribution and 1.66 for the frequency–volume distribution. This paper proposes different scaling relationships for different moving depths, and landslide erosion volumes were estimated on the basis of depth; thus, landslides of different scales can be distinguished to avoid errors in volume estimation. Two different scaling exponents are proposed: 1.21 for landslide erosions with depths of less than 2 m and 1.01 for landslide erosions with depths of more than 2 m. The proposed scaling relationships are practical for landslide erosion volume estimation by different depths according to the landslide area, and they can provide preliminary results for sediment budget planning in a reservoir basin.展开更多
Carpal tunnel syndrome(CTS) is a common peripheral entrapment neuropathy of the median nerve at wrist level, and is thought to be caused by compression of the median nerve in the carpal tunnel. There is no standard qu...Carpal tunnel syndrome(CTS) is a common peripheral entrapment neuropathy of the median nerve at wrist level, and is thought to be caused by compression of the median nerve in the carpal tunnel. There is no standard quantitative reference for the diagnosis of CTS. Greyscale sonography and sonoelastography(SEL) have been used as diagnostic tools. The most commonly agreed findings in grey-scale sonography for the diagnosis of CTS is enlargement of the median nerve cross-sectional area(CSA). Several authors have assessed additional parameters. "Delta CSA" is the difference between the proximal median nerve CSA at the pronator quadratus and the maximal CSA within the carpal tunnel. The "CSA ratio" is the ratio of CSA in the carpal tunnel to the CSA at the mid forearm. These additional parameters showed better diagnostic accuracy than CSA measurement alone. Recently, a number of studies have investigated the elasticity of the median nerve using SEL, and have shown that this also has diagnostic value, as it was significantly stiffer in CTS patients compared to healthy volunteers. In this review, we summarize the usefulness of grey-scale sonography and SEL in diagnosing CTS.展开更多
Three types of spatial function zoning is an effective measure for regional environmental protection and orderly development.For ecological and economic coordinated development, spatial function zones should be divide...Three types of spatial function zoning is an effective measure for regional environmental protection and orderly development.For ecological and economic coordinated development, spatial function zones should be divided scientifically to clear its direction of development and protection. Therefore, based on ecological constraints, a beneficial discussion would be about the key ecological function areas adopting the concept of ecological protection restriction and supporting socioeconomic development for spatial function zoning. In this paper, the researchers, taking Tacheng Basin, Xinjiang of China as an example, choose township as basic research unit and set up an evaluation index system from three aspects, namely, ecological protection suitability, agricultural production suitability, and urban development suitability, which are analyzed by using spatial analysis functions and exclusive matrix method. The results showed that: 1) This paper formed a set of multilevel evaluation index systems for three types of spatial function zoning of the key ecological function areas based on a novel perspective by scientifically dividing Tacheng Basin into ecological space, agricultural space, and urban space,which realized the integration and scientific orientation for spatial function at the township scale. 2) Under the guidance of three types of spatial pattern, the functional orientation and suggestions of development and protection was clearly defined for ecological protection zones,ecological economic zones, agricultural production zones, and urban development zones. 3) A new idea of space governance is provided to promote the coordinated and sustainable development between ecology and economy, which can break the traditional mode of thinking about regional economic development, and offers a scientific basis and reference for macro decision-making.展开更多
Considering the urban characteristics, a customized multi-scale numerical modeling system is established to simulate the urban meteorological environment. The system mainly involves three spatial scales: the urban sca...Considering the urban characteristics, a customized multi-scale numerical modeling system is established to simulate the urban meteorological environment. The system mainly involves three spatial scales: the urban scale, urban sub-domain scale, and single to few buildings scale. In it, different underlying surface types are employed, the building drag factor is used to replace its roughness in the influence on the urban wind field, the effects of building distribution, azimuth and screening of shortwave radiation are added, and the influence of anthropogenic heating is also taken into account. All the numerical tests indicate that the simulated results are reasonably in agreement with the observational data, so the system can be used to simulate the urban meteorological environment. Making use of it, the characteristics of the meteorological environment from the urban to urban sub-domain scales, even the among-buildings scale, can be recognized. As long as the urban planning scheme is given, the corresponding simulated results can be obtained so as to meet the need of optimizing urban planning.展开更多
Based on the recognition framework of the outermost closed contours of cyclones, an automated identification algorithm capable of identifying the multi-scale cyclones that occur during spring in the Changjiang River-H...Based on the recognition framework of the outermost closed contours of cyclones, an automated identification algorithm capable of identifying the multi-scale cyclones that occur during spring in the Changjiang River-Huaihe River valleys (CHV) were developed. We studied the characteristics of the multi-scale cyclone activity that affects CHV and its relationship with rainfall during spring since 1979. The results indicated that the automated identification algorithm for cyclones proposed in this paper could intuitively identify multi-scale cyclones that affect CHV. The algorithm allows for effectively describing the shape and coverage area of the closed contours around the periphery of cyclones. We found that, compared to the meso- and sub-synoptic scale cyclone activities, the synoptic-scale cyclone activity showed more intimate correlation with the overall activity intensity of multi-scale CHV cyclones during spring. However, the frequency of occurrence of sub-synoptic scale cyclones was the highest, and their effect on changes in CHV cyclone activity could not be ignored. Based on the area of impact and the depth of the cyclones, the sub-synoptic scale, synoptic scale and comprehensive cyclone intensity indices were further defined, which showed a positive correlation with rainfall in CHV during spring. Additionally, the comprehensive cyclone intensity index was a good indicator of strong rainfall events.展开更多
Quantitative analysis of time scale effects is conducive to further understanding of vegetation water and soil conservation mechanism.Based on the observation data of the grass covered and bare soil( control) experime...Quantitative analysis of time scale effects is conducive to further understanding of vegetation water and soil conservation mechanism.Based on the observation data of the grass covered and bare soil( control) experimental plots located in Hetian Town,Changting County of Fujian Province from 2007 to 2010,the characteristics of 4 parameters( precipitation,vegetation,RE and SE) were analyzed at precipitation event,month,season,and annual scales,and then the linear regression models were established to describe the relationships between RE( SE)and its influencing factors of precipitation and vegetation. RE( SE) means the ratio of runoff depth( soil loss) of grass covered plot to that of the control plot. Results show that these 4 parameters presented different magnitude and variation on different time scales. RE and SE were relatively stable either within or among different time scales due to their ratios reducing the influence of other factors. The coupling of precipitation and vegetation led to better water conservation effect at lower RE( < 0. 3) at precipitation event scale as well as at season scale,while the water conservation effect was dominated by precipitation at slightly higher( 0. 3- 0. 4) and higher( > 0. 7) REs at precipitation event scale as well as at annual scale( R2> 0. 78). For the soil conservation effect,precipitation or / and vegetation was / were the dominated influence factor( s) at precipitation event and annual scales,and the grass LAI could basically describe the positive conservation effect( SE <1,R2> 0. 55),while the maximum 30 min intensity( I30) could describe the negative conservation effect more accurately( SE >1,R2> 0. 79). More uncertainties( R2≈0. 4) exist in the models of both RE and SE at two moderate time scales( month and season). Consequently,factors influencing water and soil conservation effect of grass present different variation and coupling characteristics on different time scales,indicating the importance of time scale at the study on water and soil conservation.展开更多
On May 20 th 2007, a brief but severe downpour rainstorm occurred in the coastal areas of Maoming and Yangjiang with rainfall of 115 mm per hour. Data from NCEP/NCAR reanalysis with 1°×1° resolution, Do...On May 20 th 2007, a brief but severe downpour rainstorm occurred in the coastal areas of Maoming and Yangjiang with rainfall of 115 mm per hour. Data from NCEP/NCAR reanalysis with 1°×1° resolution, Doppler weather radar, conventional surface observations, high-altitude radiosonde and wind profiler radar were used to analyze characteristics and contributions of synoptic scale and mesoscale systems during this torrential rainstorm. The results showed that:(1) the storm was caused by a quasi-linear mesoscale convective system(MCS) and the slow-movement of this system was the primary trigger of the torrential downpour;(2) water vapor was abundant, nearly saturated and in steady state throughout the atmosphere before the storm; intrusion of the weak dry and cold air in the middle level and a striking "dry above and wet below " structure had increased the atmospheric instability;(3) low-level southwesterly airflow from a low pressure(trough) at the Beibu Gulf provided abundant water vapor at the onset of the rainstorm; a deep dry layer was formed by dry and cold air behind the high-level trough, which facilitated latent heat release;upper-level divergence and low-level convergence circulations also provided vertical uplift for warm and moist air at the lower level;(4) Topography only played a minor role as the MCS developed and strengthened over relatively flat coastal terrain. Low level density flow induced by convection triggered new convective cell generation at the leading edge of the convective system, thereby playing a key role in the change of temperature gradient at lower layers, and resulting in strengthening atmospheric instability.展开更多
基金the Natural Science Foundation of China(41807285)Interdisciplinary Innovation Fund of Natural Science,NanChang University(9167-28220007-YB2107).
文摘This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou City in China,its eastern region(Ganzhou East),and Ruijin County in Ganzhou East were chosen.Different mapping unit scales are represented by grid units with spatial resolution of 30 and 60 m,as well as slope units that were extracted by multi-scale segmentation method.The 3855 landslide locations and 21 typical environmental factors in Ganzhou City are first determined to create spatial datasets with input-outputs.Then,landslide susceptibility maps(LSMs)of Ganzhou City,Ganzhou East and Ruijin County are pro-duced using a support vector machine(SVM)and random forest(RF),respectively.The LSMs of the above three regions are then extracted by mask from the LSM of Ganzhou City,along with the LSMs of Ruijin County from Ganzhou East.Additionally,LSMs of Ruijin at various mapping unit scales are generated in accordance.Accuracy and landslide suscepti-bility indexes(LSIs)distribution are used to express LSP uncertainties.The LSP uncertainties under grid units significantly decrease as study area scales decrease from Ganzhou City,Ganzhou East to Ruijin County,whereas those under slope units are less affected by study area scales.Of course,attentions should also be paid to the broader representativeness of large study areas.The LSP accuracy of slope units increases by about 6%–10%compared with those under grid units with 30 m and 60 m resolution in the same study area's scale.The significance of environmental factors exhibits an averaging trend as study area scale increases from small to large.The importance of environmental factors varies greatly with the 60 m grid unit,but it tends to be consistent to some extent in the 30 m grid unit and the slope unit.
基金One Hundred Talents Program of CAS No.CXIOG-C00-01+1 种基金 National Natural Science Foundation of China No.39970613
文摘The method for simulating the temporal and spatial distribution patterns of leaf area index (LAI) and biomass at landscape scale using remote sensing images and surface data was discussed in this paper. The procedure was: (1) annual maximum normalized difference vegetation index (NDVI) over the landscape was calculated from TM images; (2) the relationship model between NDVI and LAI was built and annual maximum LAI over the landscape was simulated; (3) the relationship models between LAI and biomass were built and annual branch, stem, root and maximum leaf biomass over the landscape were simulated; (4) spatial distribution patterns of leaf biomass and LAI in different periods all the year round were obtained. The simulation was based on spatial analysis module GRID in ArcInfo software. The method is also a kind of scaling method from patch scale to landscape scale. A case study of Changbai Mountain Nature Reserve was dissertated. Analysis and primary validation were carried out to the simulated LAI and biomass for the major vegetation types in the Changbai Mountain in 1995.
文摘In India, with ever increasing population and stress on natural resources, especially water, rejuvenation of rainwater harvesting (RWH) technique which was forgotten over the days is becoming very essential. Large number of RWH methods that are available in the literature are demand specific and site specific, since RWH system depends on the topography, land use, land cover, rainfall and demand pattern. Thus for each and every case, a detailed evaluation of RWH structures is required for implementation, including the analy-sis of hydrology, topography and other aspects like site availability and economics, however a common methodology could be evolved. The present study was aimed at evaluation of various RWH techniques in order to identify the most appropriate technique suitable for a large scale industrial area to meet its daily wa-ter demand. An attempt is made to determine the volume of water to be stored using mass balance method, Ripple diagram method, analytical method, and sequent peak algorithm method. Based on various satisfying criteria, analytical hierarchy process (AHP) is employed to determine the most appropriate type of RWH method and required number of RWH structures in the study area. If economy alone is considered along with hydrological and site specific parameters, recharging the aquifer has resulted as a better choice. However other criteria namely risk, satisfaction in obtaining required volume of water for immediate utilization etc. has resulted in opting for concrete storage structures method. From the results it is found that AHP, if used with all possible criteria can result in a better tool for evaluation of RWH methods and structures. This RWH structures not only meets the demand but saves transportation cost of water and reduces the dependability of the industry on irrigation reservoir. Besides monetary benefits it is hoped that the micro environment inside the industry will improve due to the cooling effect of the stored water.
基金Supported by Fundamental Research Funds for the Central Universities(SWU1209377)of Southwest UniversityEnterprise Management to Foster Discipline of Rongchang Campus(RCQG207001)of Southwest University
文摘At the background of urban and rural integration,this paper analyzed and discussed factors restricting large-scale farmland operation in China's hilly areas from the qualitative perspective. It recognized large-scale farmland operation on the basis of the long tail theory. Finally,it came up with recommendations for developing large-scale farmland operation in hilly areas.
基金National Development and Reform Commission Project ″Experimental Detection of Urban Active Faults″ (2004-1138).
文摘In this paper, through a multi-scale separation of the aeromagnetic anomaly by wavelet transform technique, we reprocessed the aeromagnetic data collected 20 years ago in Beijing area and analyzed the aeromagnetic anomaly qualitatively, integrating geological structure features in the area. In particular, we studied the spatial distributions of the two main faults called Shunyi-Liangxiang fault and Banqiao-Babaoshan-Tongxian fault, which have cut and gone through the central Beijing area striking in NE and EW directions, respectively. The influences of these two faults on the earthquakes have also been discussed briefly.
文摘[Objective] The research aimed to study the meso-scale characteristics of a hail process in Linyi area. [Method] By comprehensively using MICAPS conventional observation data, automatic encryption ground station, MM5 model product and Doppler weather radar data, a strong convective hail weather process which happened in Shandong Peninsula and southeast of Shandong on May 30, 2010 was analyzed. The circulation background and physical mechanism of strong convection weather occurrence, the features of meso- and micro-scale systems were discussed. Some occurrence and development rules of such weather were found. [Result] The strong convective weather was mainly affected by the cold vortex and translot. The high-altitude northwest airflow, low-level southwest airflow, dry and cold air at the high layer, warm and wet air at the low layer, forward-tilting trough caused the strong convective weather. The radar echo analysis showed that the radar echo in the process belonged to the typical multi-monomer windstorm echo, and the strong echo zone was in the forefront of echo. When the convection development was the strongest, the echo intensity reached 65 dBz, and the echo top height surpassed 11 km. As the development of windstorm monomer, the big-value zone of vertical liquid water content product had the jumping formation and disappearance. Moreover, there was obvious weak echo zone. The windstorm monomer moved to the southeast direction as the precipitation system. In the right front of monomer moving direction, there was hook echo feature. The evolution characteristics of radial speed field at the different elevation angles before and after the hail weather occurrence were analyzed. It was found that the radial speed field had some premonitory variations before the hail weather occurrence. Doppler radar product was used to improve the initial field of MM5 model, which could improve the forecast effect in the certain degree and the accuracy of short-time forecast and nowcasting. [Conclusion] The research accumulated the experience for the short-term forecast and nowcasting work of strong convective weather in future.
基金supported by the National Natural Science Foundation of China (40725001 40501012)+1 种基金drought mete-orological scientific research fund projects (IAM200707)the Knowledge Innovation Program from the Chinese Academy of Sciences (KZCX2-XB2-04)
文摘Understanding how the transpiration of this vegetation type responds to environmental stress is important for determining the wa-ter-balance dynamics of the riparian ecosystem threatened by groundwater depletion. Transpiration and sap flow were measured using the heat-pulse technique. The results were then projected up to the stand level to investigate the stand’s water-use in relation to climate forcing in the desert riparian forest in an extreme arid region. This study took place from April through October 2003 and from May through October 2004. The experimental site was selected in the Populus euphratica Forest Reserve (101o10' E, 41o59' N) in Ejina county, in the lower Heihe River basin, China. The sapwood area was used as a scalar to extrapolate the stand-water consumption from the whole trees’ water consumption measured by the heat-pulse velocity recorder (HPVR). Scale transferring from a series of individual trees to a stand was done according to the existing natural variations between trees under given environmental conditions. The application of the biometric parameters available from individual tree and stand levels was proved suitable for this purpose. A significant correlation between the sapwood area and tree diameter at breast height (DBH) was found. The prediction model is well fitted by the power model. On the basis of the prediction model, the sapwood area can be cal-culated by DBH. The sap-flow density can then be used to extrapolate the stand-water use by means of a series of mathematical models.
文摘Landslides produce large quantities of sediment deposits and reduce reservoir life. This study investigated landslides at the Shihmen Reservoir basin in Taiwan that were induced by Typhoon Sinlaku and Typhoon Jangmi in 2008. We formulate scaling relationships between landslide erosion volume and area and conclude that sediment budget can be estimated based on the easier-todetermine landslide erosion area. The methodologies applied for the investigation were geomorphological analysis through 5 m × 5 m digital terrain models(DTMs) of the basin created before and after the landslide events and spatial analysis through a geographic information system. The erosion area and volume of landslides were measured through the subtraction of DTMs produced before and after the events. Statistical analysis revealed that the landslide erosion frequency–magnitude distribution exhibited power-law behaviors with a scaling exponent of 2.15 for the frequency–area distribution and 1.66 for the frequency–volume distribution. This paper proposes different scaling relationships for different moving depths, and landslide erosion volumes were estimated on the basis of depth; thus, landslides of different scales can be distinguished to avoid errors in volume estimation. Two different scaling exponents are proposed: 1.21 for landslide erosions with depths of less than 2 m and 1.01 for landslide erosions with depths of more than 2 m. The proposed scaling relationships are practical for landslide erosion volume estimation by different depths according to the landslide area, and they can provide preliminary results for sediment budget planning in a reservoir basin.
文摘Carpal tunnel syndrome(CTS) is a common peripheral entrapment neuropathy of the median nerve at wrist level, and is thought to be caused by compression of the median nerve in the carpal tunnel. There is no standard quantitative reference for the diagnosis of CTS. Greyscale sonography and sonoelastography(SEL) have been used as diagnostic tools. The most commonly agreed findings in grey-scale sonography for the diagnosis of CTS is enlargement of the median nerve cross-sectional area(CSA). Several authors have assessed additional parameters. "Delta CSA" is the difference between the proximal median nerve CSA at the pronator quadratus and the maximal CSA within the carpal tunnel. The "CSA ratio" is the ratio of CSA in the carpal tunnel to the CSA at the mid forearm. These additional parameters showed better diagnostic accuracy than CSA measurement alone. Recently, a number of studies have investigated the elasticity of the median nerve using SEL, and have shown that this also has diagnostic value, as it was significantly stiffer in CTS patients compared to healthy volunteers. In this review, we summarize the usefulness of grey-scale sonography and SEL in diagnosing CTS.
基金Under the auspices of Grant Program of Clean Development Mechanism Fund of China(CDMF)(No.2014092)Task 2 of Key Service Project 5 for the Characteristic Institute of Chinese Academy of Sciences(No.TSS-2015-014-FW-5-2)+2 种基金National Natural Science Foundation of China(No.41571159)The Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA20010301)Jiangsu Natural Science Foundation(No.BK20181105)
文摘Three types of spatial function zoning is an effective measure for regional environmental protection and orderly development.For ecological and economic coordinated development, spatial function zones should be divided scientifically to clear its direction of development and protection. Therefore, based on ecological constraints, a beneficial discussion would be about the key ecological function areas adopting the concept of ecological protection restriction and supporting socioeconomic development for spatial function zoning. In this paper, the researchers, taking Tacheng Basin, Xinjiang of China as an example, choose township as basic research unit and set up an evaluation index system from three aspects, namely, ecological protection suitability, agricultural production suitability, and urban development suitability, which are analyzed by using spatial analysis functions and exclusive matrix method. The results showed that: 1) This paper formed a set of multilevel evaluation index systems for three types of spatial function zoning of the key ecological function areas based on a novel perspective by scientifically dividing Tacheng Basin into ecological space, agricultural space, and urban space,which realized the integration and scientific orientation for spatial function at the township scale. 2) Under the guidance of three types of spatial pattern, the functional orientation and suggestions of development and protection was clearly defined for ecological protection zones,ecological economic zones, agricultural production zones, and urban development zones. 3) A new idea of space governance is provided to promote the coordinated and sustainable development between ecology and economy, which can break the traditional mode of thinking about regional economic development, and offers a scientific basis and reference for macro decision-making.
基金sponsored by the Key Project(96-920-34-07)of the Ministry of Science and Technology,Chinathe Nationa1 Natura1 Science Foundation of China(40333027).
文摘Considering the urban characteristics, a customized multi-scale numerical modeling system is established to simulate the urban meteorological environment. The system mainly involves three spatial scales: the urban scale, urban sub-domain scale, and single to few buildings scale. In it, different underlying surface types are employed, the building drag factor is used to replace its roughness in the influence on the urban wind field, the effects of building distribution, azimuth and screening of shortwave radiation are added, and the influence of anthropogenic heating is also taken into account. All the numerical tests indicate that the simulated results are reasonably in agreement with the observational data, so the system can be used to simulate the urban meteorological environment. Making use of it, the characteristics of the meteorological environment from the urban to urban sub-domain scales, even the among-buildings scale, can be recognized. As long as the urban planning scheme is given, the corresponding simulated results can be obtained so as to meet the need of optimizing urban planning.
基金jointly sponsored by the National Natural Science Foundation of China(Grant No.41575081)the National Basic Research Program of China(Grant No.2015CB953904)+3 种基金the Public Sector(Meteorology)Special Research Foundation(Grant Nos.GYHY201406024 and GYHY201306022)the Special Fund for Core Operational Development of Forecast and Prediction of the China Meteorological Administration(Grant No.CMAHX20160405)the Natural Science Foundation of Jiangsu Province(Grant No.BK20161603,BK2012465)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Based on the recognition framework of the outermost closed contours of cyclones, an automated identification algorithm capable of identifying the multi-scale cyclones that occur during spring in the Changjiang River-Huaihe River valleys (CHV) were developed. We studied the characteristics of the multi-scale cyclone activity that affects CHV and its relationship with rainfall during spring since 1979. The results indicated that the automated identification algorithm for cyclones proposed in this paper could intuitively identify multi-scale cyclones that affect CHV. The algorithm allows for effectively describing the shape and coverage area of the closed contours around the periphery of cyclones. We found that, compared to the meso- and sub-synoptic scale cyclone activities, the synoptic-scale cyclone activity showed more intimate correlation with the overall activity intensity of multi-scale CHV cyclones during spring. However, the frequency of occurrence of sub-synoptic scale cyclones was the highest, and their effect on changes in CHV cyclone activity could not be ignored. Based on the area of impact and the depth of the cyclones, the sub-synoptic scale, synoptic scale and comprehensive cyclone intensity indices were further defined, which showed a positive correlation with rainfall in CHV during spring. Additionally, the comprehensive cyclone intensity index was a good indicator of strong rainfall events.
基金Supported by National Natural Science Foundation Project(41071281)Natural Science Foundation of Jiangsu Province(BK20131078)"Qing Lan Project" of Jiangsu Provincial Department of Education
文摘Quantitative analysis of time scale effects is conducive to further understanding of vegetation water and soil conservation mechanism.Based on the observation data of the grass covered and bare soil( control) experimental plots located in Hetian Town,Changting County of Fujian Province from 2007 to 2010,the characteristics of 4 parameters( precipitation,vegetation,RE and SE) were analyzed at precipitation event,month,season,and annual scales,and then the linear regression models were established to describe the relationships between RE( SE)and its influencing factors of precipitation and vegetation. RE( SE) means the ratio of runoff depth( soil loss) of grass covered plot to that of the control plot. Results show that these 4 parameters presented different magnitude and variation on different time scales. RE and SE were relatively stable either within or among different time scales due to their ratios reducing the influence of other factors. The coupling of precipitation and vegetation led to better water conservation effect at lower RE( < 0. 3) at precipitation event scale as well as at season scale,while the water conservation effect was dominated by precipitation at slightly higher( 0. 3- 0. 4) and higher( > 0. 7) REs at precipitation event scale as well as at annual scale( R2> 0. 78). For the soil conservation effect,precipitation or / and vegetation was / were the dominated influence factor( s) at precipitation event and annual scales,and the grass LAI could basically describe the positive conservation effect( SE <1,R2> 0. 55),while the maximum 30 min intensity( I30) could describe the negative conservation effect more accurately( SE >1,R2> 0. 79). More uncertainties( R2≈0. 4) exist in the models of both RE and SE at two moderate time scales( month and season). Consequently,factors influencing water and soil conservation effect of grass present different variation and coupling characteristics on different time scales,indicating the importance of time scale at the study on water and soil conservation.
基金Guangdong Province Science and Technology Project(2017B020244002)National key basic research and development plan(973 plan)project"Typhoon fine structure multi-source data analysis theory and method research"(2015CB452802)+2 种基金National Program on Key Basic Research Project(2015CB452801)National Natural Science Foundation project"Observation and Assimilation Technology of Batch Variational Data and Its Application"(41475102)National Natural Science Foundation of China(41275025)
文摘On May 20 th 2007, a brief but severe downpour rainstorm occurred in the coastal areas of Maoming and Yangjiang with rainfall of 115 mm per hour. Data from NCEP/NCAR reanalysis with 1°×1° resolution, Doppler weather radar, conventional surface observations, high-altitude radiosonde and wind profiler radar were used to analyze characteristics and contributions of synoptic scale and mesoscale systems during this torrential rainstorm. The results showed that:(1) the storm was caused by a quasi-linear mesoscale convective system(MCS) and the slow-movement of this system was the primary trigger of the torrential downpour;(2) water vapor was abundant, nearly saturated and in steady state throughout the atmosphere before the storm; intrusion of the weak dry and cold air in the middle level and a striking "dry above and wet below " structure had increased the atmospheric instability;(3) low-level southwesterly airflow from a low pressure(trough) at the Beibu Gulf provided abundant water vapor at the onset of the rainstorm; a deep dry layer was formed by dry and cold air behind the high-level trough, which facilitated latent heat release;upper-level divergence and low-level convergence circulations also provided vertical uplift for warm and moist air at the lower level;(4) Topography only played a minor role as the MCS developed and strengthened over relatively flat coastal terrain. Low level density flow induced by convection triggered new convective cell generation at the leading edge of the convective system, thereby playing a key role in the change of temperature gradient at lower layers, and resulting in strengthening atmospheric instability.