CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposit...CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). The SAG template is obtained by nanospherical-lens photolithography. It is found that increasing the flow rate of 1-12 will change the CaN crystal shape from pyramid to vertical rod, while increasing the growth temperature will reduce the diameters of GaN rods to nanometer scale. Finally the CaN nanorods with smooth lateral surface and relatively good quality are obtained under the condition that the H2:N2 ratio is 1:1 and the growth temperature is 1030℃. The good crystal quality and orientation of GaN nanorods are confirmed by high resolution transmission electron microscopy. The cathodoluminescence spectrum suggests that the crystal and optical quality is also improved with increasing the temperature.展开更多
A 32 Gb/s monolithically integrated electroabsorption modulated laser is fabricated by selective area growth technology. The threshold current of the device is below 13mA. The output power exceeds 10mW at 0V bias when...A 32 Gb/s monolithically integrated electroabsorption modulated laser is fabricated by selective area growth technology. The threshold current of the device is below 13mA. The output power exceeds 10mW at 0V bias when the injection current of the distributed feedback laser is 100mA at 25℃. The side mode suppression ratio is over 50 dB. A 32Gb/s eye diagram is measured with a 3.SVpp nonreturn-to-zero pseudorandom modulation signal at -2.3 V bias. A clearly opening eyediagram with a dynamic extinction ratio of 8.01 dB is obtained.展开更多
A high quality of GaAs crystal growth in nanoscale V-shape trenches on Si(O01) substrates is achieved by using the aspect-ratio trapping method. GaAs thin films are deposited via metal-organic chemical vapor deposit...A high quality of GaAs crystal growth in nanoscale V-shape trenches on Si(O01) substrates is achieved by using the aspect-ratio trapping method. GaAs thin films are deposited via metal-organic chemical vapor deposition by using a two-step growth process. Threading disJocations arising from lattice mismatch are trapped by laterally confining sidewalls, and antiphase domains boundaries are completely restricted by V-groove trenches with Si { 111} facets. Material quality is confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution X-ray diffraction. Low temperature photoluminescence (PL) measurement is used to analyze the thermal strain relaxation in GaAs layers. This approach shows great promise for the realization of high mobility devices or optoelectronie integrated circuits on Si substrates.展开更多
High performance 1 57μm spotsize converter monolithically integrated DFB is fabricated by the technique of self aligned selective area growth.The upper optical confinement layer and the butt coupled tapered thickn...High performance 1 57μm spotsize converter monolithically integrated DFB is fabricated by the technique of self aligned selective area growth.The upper optical confinement layer and the butt coupled tapered thickness waveguide are regrown simultaneously,which not only offeres the separated optimization of the active region and the integrated spotsize converter,but also reduces the difficulty of the butt joint selective regrowth.The threshold current is as low as 4 4mA.The output power at 49mA is 10 1mW.The side mode suppression ratio (SMSR) is 33 2dB.The vertical and horizontal far field divergence angles are as small as 9° and 15° respectively,the 1dB misalignment tolerance are 3 6μm and 3 4μm.展开更多
Migration characterizations of Ga and In adatoms on the dielectric surface in selective metal organic vapor phase epitaxy (MOVPE) were investigated. In the typical MOVPE environment, the selectivity of growth is pre...Migration characterizations of Ga and In adatoms on the dielectric surface in selective metal organic vapor phase epitaxy (MOVPE) were investigated. In the typical MOVPE environment, the selectivity of growth is preserved for GaN, and the growth rate of GaN micro-pyramids is sensitive to the period of the patterned SiO2 mask. A surface migration induced model was adopted to figure out the effective migration length of Ga adatoms on the dielectric surface. Different from the growth of GaN, the selective area growth of InGaN on the patterned template would induce the deposition of InGaN polycrystalline particles on the patterned Si02 mask with a long period. It was demonstrated with a scanning electron microscope and energy dispersive spectroscopy that the In adatoms exhibit a shorter migration length on the dielectric surface.展开更多
Ga N micro-pyramids with AlGaN capping layer are grown by selective metal–organic–vapor phase epitaxy(MOVPE). Compared with bare Ga N micro-pyramids, AlGaN/Ga N micro-pyramids show wrinkling morphologies at the bo...Ga N micro-pyramids with AlGaN capping layer are grown by selective metal–organic–vapor phase epitaxy(MOVPE). Compared with bare Ga N micro-pyramids, AlGaN/Ga N micro-pyramids show wrinkling morphologies at the bottom of the structure. The formation of those special morphologies is associated with the spontaneously formed AlGaN polycrystalline particles on the dielectric mask, owing to the much higher bond energy of Al–N than that of Ga–N. When the sizes of the polycrystalline particles are larger than 50 nm, the uniform source supply behavior is disturbed, thereby leading to unsymmetrical surface morphology. Analysis reveals that the scale of surface wrinkling is related to the migration length of Ga adatoms along the AlGaN {1ī01} facet. The migration properties of Al and Ga further affect the distribution of Al composition along the sidewalls, characterized by the μ-PL measurement.展开更多
InP-based photonics integration is becoming a competi- tive candidate for realizing optical modules with enhanced functionality at a reduced cost, especially in optical com- munication systems, since the proposal of w...InP-based photonics integration is becoming a competi- tive candidate for realizing optical modules with enhanced functionality at a reduced cost, especially in optical com- munication systems, since the proposal of wavelength division multiplexing (WDM). In recent years, network traffic has raised demands for high capacity, high speed transmission systems.展开更多
We report a wavelength tunable electro-absorption modulated DBR laser based on a combined method of SAG and QWI. The threshold current is 37mA and the output power at 100mA gain current is 3.5mW. When coupled to a sin...We report a wavelength tunable electro-absorption modulated DBR laser based on a combined method of SAG and QWI. The threshold current is 37mA and the output power at 100mA gain current is 3.5mW. When coupled to a single-mode fiber with a coupling efficiency of 15% ,more than a 20dB extinction ratio is observed over the change of EAM bias from 0 to -2V. The 4.4nm continuous wavelength tuning range covers 6 channels on a 100GHz grid for WDM telecommunications.展开更多
A semiconductor optical amplifier and electroabsorption modulator monolithically integrated with a spotsize converter input and output is fabricated by means of selective area growth,quantum well intermixing,and asymm...A semiconductor optical amplifier and electroabsorption modulator monolithically integrated with a spotsize converter input and output is fabricated by means of selective area growth,quantum well intermixing,and asymmetric twin waveguide technology. A 1550-1600nm lossless operation with a high DC extinction ratio of 25dB and more than 10GHz 3dB bandwidth are successfully achieved. The output beam divergence angles of the device in the horizontal and vertical directions are as small as 7.3°× 18.0°, respectively, resulting in a 3.0dB coupling loss with a cleaved single-mode optical fiber.展开更多
We report a selective area growth(SAG) method to define the p-GaN gate of AlGaN/GaN high electron mobility transistors(HEMTs) by metal-organic chemical vapor deposition.Compared with Schottky gate HEMTs,the SAG p-...We report a selective area growth(SAG) method to define the p-GaN gate of AlGaN/GaN high electron mobility transistors(HEMTs) by metal-organic chemical vapor deposition.Compared with Schottky gate HEMTs,the SAG p-GaN gate HEMTs show more positive threshold voltage(Vth) and better gate control ability.The influence of Cp2Mg flux of SAG p-GaN gate on the AlGaN/GaN HEMTs has also been studied.With the increasing Cp2Mg from 0.16 μmol/min to 0.20 μmol/min,the Vth raises from-0.67 V to-0.37 V.The maximum transconductance of the SAG HEMT at a drain voltage of 10 V is 113.9 mS/mm while that value of the Schottky HEMT is 51.6 mS/mm.The SAG method paves a promising way for achieving p-GaN gate normally-off AlGaN/GaN HEMTs without dry etching damage.展开更多
A selected area growth wavelength converter based on a PD-EAM optical logic gate for WDM application is presented, integrating an EML transmitter and a SOA-PD receiver. The design, fabrication, and DC characters were ...A selected area growth wavelength converter based on a PD-EAM optical logic gate for WDM application is presented, integrating an EML transmitter and a SOA-PD receiver. The design, fabrication, and DC characters were analyzed. A 2 Gb/s NRZ signal based on the C-band wavelength converted to 1555 nm with the highest extinction ratio of 7 dB was achieved and wavelength converted eye diagrams with eyes opened were presented.展开更多
Three-dimensional(3D)nanoscale crystal shaping has become essential for the precise design of advanced electronic and quantum devices based on electrically gated transport.In this context,Ⅲ-Ⅴ semiconductor-based nan...Three-dimensional(3D)nanoscale crystal shaping has become essential for the precise design of advanced electronic and quantum devices based on electrically gated transport.In this context,Ⅲ-Ⅴ semiconductor-based nanowires with low electron effective mass and strong spin-orbit coupling are particularly investigated because of their exceptional quantum transport properties and the good electrostatic control they provide.Among the main challenges involved in the processing of these nanodevices are(i)the management of the gate stack which requires ex-situ passivation treatment to reduce the density of traps at the oxide/semiconductor interface,(ii)the ability to get good ohmic contacts for source and drain electrodes and(iii)the scalability and reliability of the process for the fabrication of complex architectures based on nanowire networks.In this paper,we show that selective area molecular beam epitaxy of in-plane InGaAs/InP core-shell nanowires with raised heavily doped source and drain contacts can address these different issues.Electrical characterization of the devices down to 4 K reveals the positive impact of the InP shell on the gate electrostatic control and effective electron mobility.Although comparable to the best reported values for In(Ga)As nanostructures grown on InP,this latter is severely reduced for sub-100 nm channel highlighting remaining issue to reach the ballistic regime.展开更多
Nonpolar m-plane AlGaN offers the advantage of polarization-free multiple quantum wells(MQWs)for ultraviolet(UV)emission and can be achieved on the sidewalls of selective area grown GaN nanowires.We reveal that the gr...Nonpolar m-plane AlGaN offers the advantage of polarization-free multiple quantum wells(MQWs)for ultraviolet(UV)emission and can be achieved on the sidewalls of selective area grown GaN nanowires.We reveal that the growth of AlGaN on GaN nanowires by metal organic chemical vapor deposition(MOCVD)is driven by vapor-phase diffusion,and consequently puts a limit on the pitch of nanowire array due to shadowing effect.An insight into the difficulty of achieving metal-polar AlGaN nanowire by selective area growth(SAG)in MOCVD is also provided and can be attributed to the strong tendency to form pyramidal structure due to a very small growth rate of{1011}semipolar planes compared to(0001)c-plane.The nonpolar m-plane sidewalls of GaN nanowires obtained via SAG provides an excellent platform for growth of nonpolar AlGaN MQWs.UV emission from mplane Al_(x)Ga_(1−x)N/Al_(y)Ga_(1−y)N MQWs grown on sidewalls of dislocation-free GaN nanowire is demonstrated in the wavelength range of 318–343 nm.展开更多
基金Supported by the Key Program of the National Natural Science Foundation of China under Grant No 61334009the National High Technology Research and Development Program of China under Grant No 2014AA032604
文摘CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). The SAG template is obtained by nanospherical-lens photolithography. It is found that increasing the flow rate of 1-12 will change the CaN crystal shape from pyramid to vertical rod, while increasing the growth temperature will reduce the diameters of GaN rods to nanometer scale. Finally the CaN nanorods with smooth lateral surface and relatively good quality are obtained under the condition that the H2:N2 ratio is 1:1 and the growth temperature is 1030℃. The good crystal quality and orientation of GaN nanorods are confirmed by high resolution transmission electron microscopy. The cathodoluminescence spectrum suggests that the crystal and optical quality is also improved with increasing the temperature.
基金Supported by the National High-Technology Research and Development Program of China under Grant Nos 2011AA010303and 2012AA012203the National Basic Research Program of China under Grant No 2011CB301702the National Natural Science Foundation of China under Grant Nos 61321063 and 6132010601
文摘A 32 Gb/s monolithically integrated electroabsorption modulated laser is fabricated by selective area growth technology. The threshold current of the device is below 13mA. The output power exceeds 10mW at 0V bias when the injection current of the distributed feedback laser is 100mA at 25℃. The side mode suppression ratio is over 50 dB. A 32Gb/s eye diagram is measured with a 3.SVpp nonreturn-to-zero pseudorandom modulation signal at -2.3 V bias. A clearly opening eyediagram with a dynamic extinction ratio of 8.01 dB is obtained.
基金Supported by the National Science and Technology Major Project of China under Grant No 2011ZX02708
文摘A high quality of GaAs crystal growth in nanoscale V-shape trenches on Si(O01) substrates is achieved by using the aspect-ratio trapping method. GaAs thin films are deposited via metal-organic chemical vapor deposition by using a two-step growth process. Threading disJocations arising from lattice mismatch are trapped by laterally confining sidewalls, and antiphase domains boundaries are completely restricted by V-groove trenches with Si { 111} facets. Material quality is confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution X-ray diffraction. Low temperature photoluminescence (PL) measurement is used to analyze the thermal strain relaxation in GaAs layers. This approach shows great promise for the realization of high mobility devices or optoelectronie integrated circuits on Si substrates.
文摘High performance 1 57μm spotsize converter monolithically integrated DFB is fabricated by the technique of self aligned selective area growth.The upper optical confinement layer and the butt coupled tapered thickness waveguide are regrown simultaneously,which not only offeres the separated optimization of the active region and the integrated spotsize converter,but also reduces the difficulty of the butt joint selective regrowth.The threshold current is as low as 4 4mA.The output power at 49mA is 10 1mW.The side mode suppression ratio (SMSR) is 33 2dB.The vertical and horizontal far field divergence angles are as small as 9° and 15° respectively,the 1dB misalignment tolerance are 3 6μm and 3 4μm.
基金supported by the National Natural Science Foundation of China(Grant Nos.61274039 and 51177175)the National Basic Research Program of China(Grant No.2011CB301903)+5 种基金the Ph.D.Programs Foundation of Ministry of Education of China(Grant No.20110171110021)the International Sci.&Tech.Collaboration Program of China(Grant No.2012DFG52260)the International Sci.&Tech.Collaboration Program of Guangdong Province,China(Grant No.2013B051000041)the Science and Technology Plan of Guangdong Province,China(Grant No.2013B010401013)the National High Technology Research and Development Program of China(Grant No.2014AA032606)the Opened Fund of the State Key Laboratory on Integrated Optoelectronics,China(Grant No.IOSKL2014KF17)
文摘Migration characterizations of Ga and In adatoms on the dielectric surface in selective metal organic vapor phase epitaxy (MOVPE) were investigated. In the typical MOVPE environment, the selectivity of growth is preserved for GaN, and the growth rate of GaN micro-pyramids is sensitive to the period of the patterned SiO2 mask. A surface migration induced model was adopted to figure out the effective migration length of Ga adatoms on the dielectric surface. Different from the growth of GaN, the selective area growth of InGaN on the patterned template would induce the deposition of InGaN polycrystalline particles on the patterned Si02 mask with a long period. It was demonstrated with a scanning electron microscope and energy dispersive spectroscopy that the In adatoms exhibit a shorter migration length on the dielectric surface.
基金supported by the National Natural Science Foundation of China(Grant Nos.61274039 and 61574173)the National Key Research and Development Program,China(Grant No.2016YFB0400105)+9 种基金the International Science and Technology Collaboration Program of Guangdong Province,China(Grant No.2013B051000041)the International Science and Technology Collaboration Program of Guangzhou City,China(Grant No.2016201604030055)the National High Technology Research and Development Program of China(Grant No.2014AA032606)Guangdong Provincial Natural Science Foundation,China(Grant No.2015A030312011)the Science&Technology Plan of Guangdong Province,China(Grant Nos.2015B090903062,2015B010132007,and2015B010129010)the Science and Technology Plan of Guangzhou,China(Grant No.201508010048)the Science and Technology Plan of Foshan,China(Grant No.201603130003)Guangdong–Hong Kong Joint Innovation Project of Guangdong Province,China(Grant No.2014B050505009)the Opened Fund of the State Key Laboratory on Integrated Optoelectronics(Grant No.IOSKL2014KF17)the Zhuhai Key Technology Laboratory of Wide Bandgap Semiconductor Power Electronics,Sun Yat-sen University(Grant No.20167612042080001)
文摘Ga N micro-pyramids with AlGaN capping layer are grown by selective metal–organic–vapor phase epitaxy(MOVPE). Compared with bare Ga N micro-pyramids, AlGaN/Ga N micro-pyramids show wrinkling morphologies at the bottom of the structure. The formation of those special morphologies is associated with the spontaneously formed AlGaN polycrystalline particles on the dielectric mask, owing to the much higher bond energy of Al–N than that of Ga–N. When the sizes of the polycrystalline particles are larger than 50 nm, the uniform source supply behavior is disturbed, thereby leading to unsymmetrical surface morphology. Analysis reveals that the scale of surface wrinkling is related to the migration length of Ga adatoms along the AlGaN {1ī01} facet. The migration properties of Al and Ga further affect the distribution of Al composition along the sidewalls, characterized by the μ-PL measurement.
基金supported by the National High-Tech Research and Development Program of China(No.2015AA016902)the National Natural Science Foundation of China(Nos.61635010,61674136,and 61435002)
文摘InP-based photonics integration is becoming a competi- tive candidate for realizing optical modules with enhanced functionality at a reduced cost, especially in optical com- munication systems, since the proposal of wavelength division multiplexing (WDM). In recent years, network traffic has raised demands for high capacity, high speed transmission systems.
文摘We report a wavelength tunable electro-absorption modulated DBR laser based on a combined method of SAG and QWI. The threshold current is 37mA and the output power at 100mA gain current is 3.5mW. When coupled to a single-mode fiber with a coupling efficiency of 15% ,more than a 20dB extinction ratio is observed over the change of EAM bias from 0 to -2V. The 4.4nm continuous wavelength tuning range covers 6 channels on a 100GHz grid for WDM telecommunications.
文摘A semiconductor optical amplifier and electroabsorption modulator monolithically integrated with a spotsize converter input and output is fabricated by means of selective area growth,quantum well intermixing,and asymmetric twin waveguide technology. A 1550-1600nm lossless operation with a high DC extinction ratio of 25dB and more than 10GHz 3dB bandwidth are successfully achieved. The output beam divergence angles of the device in the horizontal and vertical directions are as small as 7.3°× 18.0°, respectively, resulting in a 3.0dB coupling loss with a cleaved single-mode optical fiber.
基金Project supported by the National Natural Sciences Foundation of China(Nos.61376090,61306008)the National High Technology Program of China(No.2014AA032606)
文摘We report a selective area growth(SAG) method to define the p-GaN gate of AlGaN/GaN high electron mobility transistors(HEMTs) by metal-organic chemical vapor deposition.Compared with Schottky gate HEMTs,the SAG p-GaN gate HEMTs show more positive threshold voltage(Vth) and better gate control ability.The influence of Cp2Mg flux of SAG p-GaN gate on the AlGaN/GaN HEMTs has also been studied.With the increasing Cp2Mg from 0.16 μmol/min to 0.20 μmol/min,the Vth raises from-0.67 V to-0.37 V.The maximum transconductance of the SAG HEMT at a drain voltage of 10 V is 113.9 mS/mm while that value of the Schottky HEMT is 51.6 mS/mm.The SAG method paves a promising way for achieving p-GaN gate normally-off AlGaN/GaN HEMTs without dry etching damage.
基金Project supported by the Nationa lHigh Technology Research and Development Program of China(Nos.2011AA010303,2012AA012203)the State Key Program for Basic Research of China(No.2011CB301702)the National Natural Science Foundation of China(Nos.61021003,61090392)
文摘A selected area growth wavelength converter based on a PD-EAM optical logic gate for WDM application is presented, integrating an EML transmitter and a SOA-PD receiver. The design, fabrication, and DC characters were analyzed. A 2 Gb/s NRZ signal based on the C-band wavelength converted to 1555 nm with the highest extinction ratio of 7 dB was achieved and wavelength converted eye diagrams with eyes opened were presented.
文摘Three-dimensional(3D)nanoscale crystal shaping has become essential for the precise design of advanced electronic and quantum devices based on electrically gated transport.In this context,Ⅲ-Ⅴ semiconductor-based nanowires with low electron effective mass and strong spin-orbit coupling are particularly investigated because of their exceptional quantum transport properties and the good electrostatic control they provide.Among the main challenges involved in the processing of these nanodevices are(i)the management of the gate stack which requires ex-situ passivation treatment to reduce the density of traps at the oxide/semiconductor interface,(ii)the ability to get good ohmic contacts for source and drain electrodes and(iii)the scalability and reliability of the process for the fabrication of complex architectures based on nanowire networks.In this paper,we show that selective area molecular beam epitaxy of in-plane InGaAs/InP core-shell nanowires with raised heavily doped source and drain contacts can address these different issues.Electrical characterization of the devices down to 4 K reveals the positive impact of the InP shell on the gate electrostatic control and effective electron mobility.Although comparable to the best reported values for In(Ga)As nanostructures grown on InP,this latter is severely reduced for sub-100 nm channel highlighting remaining issue to reach the ballistic regime.
基金the ACT node of the NCRIS-enabled Australian National Fabrication Facility(ANFF-ACT).
文摘Nonpolar m-plane AlGaN offers the advantage of polarization-free multiple quantum wells(MQWs)for ultraviolet(UV)emission and can be achieved on the sidewalls of selective area grown GaN nanowires.We reveal that the growth of AlGaN on GaN nanowires by metal organic chemical vapor deposition(MOCVD)is driven by vapor-phase diffusion,and consequently puts a limit on the pitch of nanowire array due to shadowing effect.An insight into the difficulty of achieving metal-polar AlGaN nanowire by selective area growth(SAG)in MOCVD is also provided and can be attributed to the strong tendency to form pyramidal structure due to a very small growth rate of{1011}semipolar planes compared to(0001)c-plane.The nonpolar m-plane sidewalls of GaN nanowires obtained via SAG provides an excellent platform for growth of nonpolar AlGaN MQWs.UV emission from mplane Al_(x)Ga_(1−x)N/Al_(y)Ga_(1−y)N MQWs grown on sidewalls of dislocation-free GaN nanowire is demonstrated in the wavelength range of 318–343 nm.