期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
On area-specific underground research laboratory for geological disposal of high-level radioactive waste in China 被引量:20
1
作者 Ju Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第2期99-104,共6页
Underground research laboratories (URLs), including "generic URLs" and "site-specific URLs", are un- derground facilities in which characterisation, testing, technology development, and/or demonstration activiti... Underground research laboratories (URLs), including "generic URLs" and "site-specific URLs", are un- derground facilities in which characterisation, testing, technology development, and/or demonstration activities are carried out in support of the development of geological repositories for high-level radioactive waste (HLW) disposal. In addition to the generic URL and site-specific URL, a concept of "areaspecific URL", or the third type of URL, is proposed in this paper. It is referred to as the facility that is built at a site within an area that is considered as a potential area for HLW repository or built at a place near the future repository site, and may be regarded as a precursor to the development of a repository at the site. It acts as a "generic URL", but also acts as a "site-specific URL" to some extent. Considering the current situation in China, the most suitable option is to build an "area-specific URL" in Beishan area, the first priority region for China's high-level waste repository. With this strategy, the goal to build China's URL by 2020 mav be achieved, but the time left is limited. 展开更多
关键词 Underground research laboratory (URL)area-specific URL High-level radioactive waste (HLW)Geological disposal
下载PDF
Evaluation of the Electrical Contact Area at the SOFC Cathode
2
作者 V.A.C. Haanappel I.C. Vinke L.G.J. de Haart D. Stolten 《Journal of Energy and Power Engineering》 2011年第5期474-479,共6页
In the frame of the ZeuS-Ill project, a model study was started on evaluation the area-specific resistances (ASRs) of various layers being used in SOFC stacks. It is well known that stack performance not only depend... In the frame of the ZeuS-Ill project, a model study was started on evaluation the area-specific resistances (ASRs) of various layers being used in SOFC stacks. It is well known that stack performance not only depends on cell resistance but also on the electrical conductivity of the various applied contact and protective layers. Various layers have been tested under simulated SOFC conditions, and results have shown that the lowest ASR value, about 3 mΩ.cm2, was obtained for an LSM (2) contact layer. A significantly higher resistance was found for the combined contact and protective layer LCC10-Mn3O4, being around 37 mΩ.cm2 Related to the various tests, the total ASR of an F-design stack, developed by Forschungszentrum Jiilich, under ideal conditions can be estimated. In this case the ASR value was calculated as the sum of that of the LCC10-Mn3O4 layer and the formed oxide scale due to oxidation of Crofer22APU. Contacting resistance at the anode side was considered negligible. When differences in the ASR values occurred when compared with that from current-voltage measurements performed with real SOFC stacks, this can be explained by the limited contact area between interconnect and cathode. These results can be used to model the influence of various applied layers and different geometric contact areas on the overall ASR as determined from performance measurements with SOFC stacks. 展开更多
关键词 area-specific resistance (ASR) SOFCS CATHODE electrical conductivity contact layer.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部