Arformoterol (R, R) is an enantiomer of racemic formoterol, was the first long-acting beta agonist (LABA), approved by U.S. food and Drug Administration (FDA). The Arformoterol which is used for the treatment of Chron...Arformoterol (R, R) is an enantiomer of racemic formoterol, was the first long-acting beta agonist (LABA), approved by U.S. food and Drug Administration (FDA). The Arformoterol which is used for the treatment of Chronic obstructive pulmonary disease (COPD) are inhaled bronchodilator drugs which are delivered directly to the patient’s airways through a different mechanism. The formulated drug product is kept for stability study as per ICH guideline [1] and during its stability interval analysis by HPLC (High performance liquid chromatography), an unknown peak observed at level around 0.1% which is well below the identification threshold of 0.5% but after heating it crossed the identification threshold. The approach to identify anonymous species of Arformoterol aqueous formulation was adopted as first to generate the impurity in sample, isolate, enrich and Characterize through LC-MS/MS and NMR Spectroscopy. Based on the spectral data the anonymous species was identified as an “Imine impurity”, it is secondary degradant of Amine impurity of Arformoterol formed due to reaction with leachable observed in LDPE respules.展开更多
A rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry(UPLC–MS/MS) method was developed and fully validated for determination of arformoterol in rat plasma, lung and trachea tissues....A rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry(UPLC–MS/MS) method was developed and fully validated for determination of arformoterol in rat plasma, lung and trachea tissues. The chromatographic separation was performed on an Agilent XDB C8 column with gradient elution by using acetonitrile and 0.1% formic acid water. The method presented high sensitivity(LLOQ of 1.83 pg/mL for plasma and 3.90 pg/mL for lung and trachea tissue homogenates) and great linearity over the range of 1.83–458 pg/mL for plasma, 13.9–1560 pg/mL for lung and trachea tissue homogenates. No carry over effect and matrix effect were observed. The intra-and inter-day precision/accuracy were within ±15% at three quality control concentration levels. This robust method was successfully applied to the pharmacokinetic, lung and trachea tissue distribution study after inhalation administration of arformoterol tartrate inhalation solution(50 m g/kg). The in vivo information indicate that arformoterol can be rapidly absorbed into blood through respiratory systems, lung and trachea tissue maintain a certain amount of arformoterol in 1 h after dosing.展开更多
文摘Arformoterol (R, R) is an enantiomer of racemic formoterol, was the first long-acting beta agonist (LABA), approved by U.S. food and Drug Administration (FDA). The Arformoterol which is used for the treatment of Chronic obstructive pulmonary disease (COPD) are inhaled bronchodilator drugs which are delivered directly to the patient’s airways through a different mechanism. The formulated drug product is kept for stability study as per ICH guideline [1] and during its stability interval analysis by HPLC (High performance liquid chromatography), an unknown peak observed at level around 0.1% which is well below the identification threshold of 0.5% but after heating it crossed the identification threshold. The approach to identify anonymous species of Arformoterol aqueous formulation was adopted as first to generate the impurity in sample, isolate, enrich and Characterize through LC-MS/MS and NMR Spectroscopy. Based on the spectral data the anonymous species was identified as an “Imine impurity”, it is secondary degradant of Amine impurity of Arformoterol formed due to reaction with leachable observed in LDPE respules.
基金supported by CAMS Innovation Fund for Medical Sciences(No. 2016-12M-1-009)National Scientific and Technological Major Project for New Drugs(No.2017ZX09101003-002-004)
文摘A rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry(UPLC–MS/MS) method was developed and fully validated for determination of arformoterol in rat plasma, lung and trachea tissues. The chromatographic separation was performed on an Agilent XDB C8 column with gradient elution by using acetonitrile and 0.1% formic acid water. The method presented high sensitivity(LLOQ of 1.83 pg/mL for plasma and 3.90 pg/mL for lung and trachea tissue homogenates) and great linearity over the range of 1.83–458 pg/mL for plasma, 13.9–1560 pg/mL for lung and trachea tissue homogenates. No carry over effect and matrix effect were observed. The intra-and inter-day precision/accuracy were within ±15% at three quality control concentration levels. This robust method was successfully applied to the pharmacokinetic, lung and trachea tissue distribution study after inhalation administration of arformoterol tartrate inhalation solution(50 m g/kg). The in vivo information indicate that arformoterol can be rapidly absorbed into blood through respiratory systems, lung and trachea tissue maintain a certain amount of arformoterol in 1 h after dosing.