BACKGROUND Post-translational modifications play key roles in various biological processes.Protein arginine methyltransferases(PRMTs)transfer the methyl group to specific arginine residues.Both PRMT1 and PRMT6 have em...BACKGROUND Post-translational modifications play key roles in various biological processes.Protein arginine methyltransferases(PRMTs)transfer the methyl group to specific arginine residues.Both PRMT1 and PRMT6 have emerges as crucial factors in the development and progression of multiple cancer types.We posit that PRMT1 and PRMT6 might interplay directly or in-directly in multiple ways accounting for shared disease phenotypes.AIM To investigate the mechanism of the interaction between PRMT1 and PRMT6.METHODS Gel electrophoresis autoradiography was performed to test the methyltranferase activity of PRMTs and characterize the kinetics parameters of PRMTs.Liquid chromatography-tandem mass spectrometryanalysis was performed to detect the PRMT6 methylation sites.RESULTS In this study we investigated the interaction between PRMT1 and PRMT6,and PRMT6 was shown to be a novel substrate of PRMT1.We identified specific arginine residues of PRMT6 that are methylated by PRMT1,with R106 being the major methylation site.Combined biochemical and cellular data showed that PRMT1 downregulates the enzymatic activity of PRMT6 in histone H3 methylation.CONCLUSION PRMT6 is methylated by PRMT1 and R106 is a major methylation site induced by PRMT1.PRMT1 methylation suppresses the activity of PRMT6.展开更多
Objective To screen the asymmetric dimethyl arginines (ADMA)-containing proteins which could combine with protein arginine methyltransferase 1 (PRMT1). Methods Western blot was adopted to identify the expression of PR...Objective To screen the asymmetric dimethyl arginines (ADMA)-containing proteins which could combine with protein arginine methyltransferase 1 (PRMT1). Methods Western blot was adopted to identify the expression of PRMT1 and the proteins with ADMA in glioma cell lines and normal brain tissues, and then to detect the changes of ADMA level after knock-down of PRMT1 with RNAi transfection in U87MG cells. Co-Immunoprecipitation (Co-IP), western blot, and sliver staining were employed to screen the candidate binding proteins of PRMT1. Then liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify the binding proteins of PRMT1. Results The expression of PRMT1 and some levels of ADMA were higher in glioma cell lines than in normal brain tissues. After knocking down PRMT1, some ADMA levels were found declined. After screening the binding proteins of PRMT1 with Co-IP and LC-MS/MS, 26 candidate binding proteins were identified. Among them, 6 candidate proteins had higher ions scores (>38) and bioinformation analysis predicted that SEC23-IP, ANKHD1-EIF4EBP3 protein, and 1-phosphatidylinositol-3-phosphate 5-kinase isoform 2 had possible methylated aginine sites. Conclusions The high expression of PRMT1 in glioma may induce the change of ADMA levels. Altogether 26 candidate proteins were identified, which contain ADMA and specifically bind with PRMT1.展开更多
Background:Protein arginine methyltransferases 1 (PRMT1) is over-expressed in a variety of cancers,including lung cancer,and is correlated with a poor prognosis of tumor development.This study aimed to investigate ...Background:Protein arginine methyltransferases 1 (PRMT1) is over-expressed in a variety of cancers,including lung cancer,and is correlated with a poor prognosis of tumor development.This study aimed to investigate the role of PRMT1 in nonsmall cell lung cancer (NSCLC) migration in vitro.Methods:In this study,PRMT1 expression in the NSCLC cell line A549 was silenced using lentiviral vector-mediated short hairpin RNAs.Cell migration was measured using both scratch wound healing and transwell cell migration assays.The mRNA expression levels of matrix metalloproteinase 2 (MMP-2) and tissue inhibitor ofmetalloproteinase 1,2 (TIMP l,2) were measured using quantitative real-time reverse transcription-polymerase chain reaction.The expression levels of protein markers for epithelial-mesenchymal transition (EMT) (E-cadherin,N-cadherin),focal adhesion kinase (FAK),Src,AKT,and their corresponding phosphorylated states were detected by Western blot.Results:Cell migration was significantly inhibited in the PRMT1 silenced group compared to the control group.The mRNA expression of MMP-2 decreased while TIMP 1 and TIMP2 increased significantly.E-cadherin mRNA expression also increased while N-cadherin decreased.Only phosphorylated Src levels decreased in the silenced group while FAK or AKT remained unchanged.Conclusions:PRMT1-small hairpin RNA inhibits the migration abilities of NSCLC A549 cells by inhibiting EMT,extracellular matrix degradation,and Src phosphorylation in vitro.展开更多
Aging-related ED is predominantly attributed to neurovascular dysfunction mediated by NO suppression and increased oxidative stress in penis. The alterations of protein arginine methyltransferases 1 (PRMT1)/dimethyl...Aging-related ED is predominantly attributed to neurovascular dysfunction mediated by NO suppression and increased oxidative stress in penis. The alterations of protein arginine methyltransferases 1 (PRMT1)/dimethylarginine dimethylaminohydrolase (DDAH)/ asymmetrical dimethylarginine (ADMA)/NO synthase (NOS) pathway regulate NO production in the vascular endothelium. Epigallocatechin-3-gallate (EGCG) is one of the most abundant and antioxidative ingredients isolated from green tea. In the present study, 40 Sprague-Dawley rats were randomly distributed into four groups: one young rat group and three aged rat groups treated with daily gavage feedings of EGCG at doses of O, 10 mg kg-1, and 100 mg kg-1 for 12 weeks, respectively. Erectile function was assessed by electrical stimulation of the cavernous nerves with intracavernous pressure (ICP) measurement. After euthanasia, penile tissue was investigated using Western blot and ELISA to assess the PRMTI/DDAH/ADMA/NOS metabolism pathway. Superoxide dismutase (SOD) and malondialdehyde (MDA) levels were detected by colorimetry. We also evaluated smooth muscle contents. The ratio of maximal ICP and mean systemic arterial pressure (MAP) was markedly higher in EGCG-treated aged rats than in untreated aged rats. We found that DDAH 1 and DDAH2 were expressed in cavernosal tissue, and they were downregulated in corpora of aged rats. The administration of EGCG upregulated the expression and activity of DDAH. In contrast, EGCG treatment downregulated the expression of PRMT1 and ADMA content. Moreover, EGCG-treated rats showed an improvement in smooth muscle expression, the ratio of smooth muscle cell/collagen fibril, SOD activity, and MDA levels when compared with untreated aged rats.展开更多
基金Supported by National Institutes of Health,No.5R01GM126154 and No.1R35GM149230。
文摘BACKGROUND Post-translational modifications play key roles in various biological processes.Protein arginine methyltransferases(PRMTs)transfer the methyl group to specific arginine residues.Both PRMT1 and PRMT6 have emerges as crucial factors in the development and progression of multiple cancer types.We posit that PRMT1 and PRMT6 might interplay directly or in-directly in multiple ways accounting for shared disease phenotypes.AIM To investigate the mechanism of the interaction between PRMT1 and PRMT6.METHODS Gel electrophoresis autoradiography was performed to test the methyltranferase activity of PRMTs and characterize the kinetics parameters of PRMTs.Liquid chromatography-tandem mass spectrometryanalysis was performed to detect the PRMT6 methylation sites.RESULTS In this study we investigated the interaction between PRMT1 and PRMT6,and PRMT6 was shown to be a novel substrate of PRMT1.We identified specific arginine residues of PRMT6 that are methylated by PRMT1,with R106 being the major methylation site.Combined biochemical and cellular data showed that PRMT1 downregulates the enzymatic activity of PRMT6 in histone H3 methylation.CONCLUSION PRMT6 is methylated by PRMT1 and R106 is a major methylation site induced by PRMT1.PRMT1 methylation suppresses the activity of PRMT6.
基金Supported by National Natural Science Foundation of China(30825023)
文摘Objective To screen the asymmetric dimethyl arginines (ADMA)-containing proteins which could combine with protein arginine methyltransferase 1 (PRMT1). Methods Western blot was adopted to identify the expression of PRMT1 and the proteins with ADMA in glioma cell lines and normal brain tissues, and then to detect the changes of ADMA level after knock-down of PRMT1 with RNAi transfection in U87MG cells. Co-Immunoprecipitation (Co-IP), western blot, and sliver staining were employed to screen the candidate binding proteins of PRMT1. Then liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify the binding proteins of PRMT1. Results The expression of PRMT1 and some levels of ADMA were higher in glioma cell lines than in normal brain tissues. After knocking down PRMT1, some ADMA levels were found declined. After screening the binding proteins of PRMT1 with Co-IP and LC-MS/MS, 26 candidate binding proteins were identified. Among them, 6 candidate proteins had higher ions scores (>38) and bioinformation analysis predicted that SEC23-IP, ANKHD1-EIF4EBP3 protein, and 1-phosphatidylinositol-3-phosphate 5-kinase isoform 2 had possible methylated aginine sites. Conclusions The high expression of PRMT1 in glioma may induce the change of ADMA levels. Altogether 26 candidate proteins were identified, which contain ADMA and specifically bind with PRMT1.
基金This study was supported by grants from the Natural Science Foundation of Huzhou City,the Public Welfare Technical Applied Research Project of Huzhou City (No.2013GY 19 No.2013(3Z14).Conflict of Interest:None declared
文摘Background:Protein arginine methyltransferases 1 (PRMT1) is over-expressed in a variety of cancers,including lung cancer,and is correlated with a poor prognosis of tumor development.This study aimed to investigate the role of PRMT1 in nonsmall cell lung cancer (NSCLC) migration in vitro.Methods:In this study,PRMT1 expression in the NSCLC cell line A549 was silenced using lentiviral vector-mediated short hairpin RNAs.Cell migration was measured using both scratch wound healing and transwell cell migration assays.The mRNA expression levels of matrix metalloproteinase 2 (MMP-2) and tissue inhibitor ofmetalloproteinase 1,2 (TIMP l,2) were measured using quantitative real-time reverse transcription-polymerase chain reaction.The expression levels of protein markers for epithelial-mesenchymal transition (EMT) (E-cadherin,N-cadherin),focal adhesion kinase (FAK),Src,AKT,and their corresponding phosphorylated states were detected by Western blot.Results:Cell migration was significantly inhibited in the PRMT1 silenced group compared to the control group.The mRNA expression of MMP-2 decreased while TIMP 1 and TIMP2 increased significantly.E-cadherin mRNA expression also increased while N-cadherin decreased.Only phosphorylated Src levels decreased in the silenced group while FAK or AKT remained unchanged.Conclusions:PRMT1-small hairpin RNA inhibits the migration abilities of NSCLC A549 cells by inhibiting EMT,extracellular matrix degradation,and Src phosphorylation in vitro.
文摘Aging-related ED is predominantly attributed to neurovascular dysfunction mediated by NO suppression and increased oxidative stress in penis. The alterations of protein arginine methyltransferases 1 (PRMT1)/dimethylarginine dimethylaminohydrolase (DDAH)/ asymmetrical dimethylarginine (ADMA)/NO synthase (NOS) pathway regulate NO production in the vascular endothelium. Epigallocatechin-3-gallate (EGCG) is one of the most abundant and antioxidative ingredients isolated from green tea. In the present study, 40 Sprague-Dawley rats were randomly distributed into four groups: one young rat group and three aged rat groups treated with daily gavage feedings of EGCG at doses of O, 10 mg kg-1, and 100 mg kg-1 for 12 weeks, respectively. Erectile function was assessed by electrical stimulation of the cavernous nerves with intracavernous pressure (ICP) measurement. After euthanasia, penile tissue was investigated using Western blot and ELISA to assess the PRMTI/DDAH/ADMA/NOS metabolism pathway. Superoxide dismutase (SOD) and malondialdehyde (MDA) levels were detected by colorimetry. We also evaluated smooth muscle contents. The ratio of maximal ICP and mean systemic arterial pressure (MAP) was markedly higher in EGCG-treated aged rats than in untreated aged rats. We found that DDAH 1 and DDAH2 were expressed in cavernosal tissue, and they were downregulated in corpora of aged rats. The administration of EGCG upregulated the expression and activity of DDAH. In contrast, EGCG treatment downregulated the expression of PRMT1 and ADMA content. Moreover, EGCG-treated rats showed an improvement in smooth muscle expression, the ratio of smooth muscle cell/collagen fibril, SOD activity, and MDA levels when compared with untreated aged rats.