The interfacial reaction control of SiC_p/2124Al composites was investigated during pulsed argon arc welding. Meanwhile, the mechanical properties, the metallographic structure and interfacial microstructure of the in...The interfacial reaction control of SiC_p/2124Al composites was investigated during pulsed argon arc welding. Meanwhile, the mechanical properties, the metallographic structure and interfacial microstructure of the induced welding joint were tested and detected, respectively. The results reveal that the joint with excellent properties could be achieved by the proper selection of the special filling material and the addition of the pulse during welding. Moreover, the formation mechanism of the welding joint was discussed and the corresponding measures on further improving the quality of the welding joint of SiC_p/2124Al composites were put forward in the condition of pulsed argon arc welding.展开更多
The purpose of this research was to study the effect of Argon inert gas on the laser welding quality of Co-Cr and Ni-Cr base metal alloys, which are widely used as Fixed Prosthodontics alloys in Dental Laboratories. A...The purpose of this research was to study the effect of Argon inert gas on the laser welding quality of Co-Cr and Ni-Cr base metal alloys, which are widely used as Fixed Prosthodontics alloys in Dental Laboratories. A total of 36 specimens were manufactured (18 of Ni-Cr alloy and 18 of Co-Cr alloy). The specimens were then divided into 3 subgroups (6 specimens each): control;argon-welded;and non-Argon welded. The specimens were cut, laser welded, radiographed and finally tested under tensile strength testing, followed by examination using Scanning Electron Microscopy. The tensile strength of welded specimens was lower than the strength of non-welded specimens, however this difference was not found to be statistically significant. The material factor (Co-Cr alloy or Ni-Cr alloy) has a statistically significant effect on the tensile strength, while the presence or not of the inert gas, as well as the combination of the two factors do not have a statistically significant effect. The laser welding process applied in daily practice (separation of specimen, formation of two cones in contact, aggregation of two cones, filling of the remaining gap by welding) is considered satisfactory in terms of weld strength. The factor of the material, as an independent factor, affects the tensile strength to a statistically significant degree, in contrast to the factor of the presence of inert gas which does not affect to a statistically significant degree.展开更多
The tests of mechanical properties and weld properties and observations of microstructure were carriedout. The results show that the alloy has good strength properties at room and elevated ternperatures. It has excell...The tests of mechanical properties and weld properties and observations of microstructure were carriedout. The results show that the alloy has good strength properties at room and elevated ternperatures. It has excellent cold formability and goodweldability. The alloy will be very usable.展开更多
Achieving an effective utilization and exploitation of TIG welding arcs require a thorough understanding of the plasma properties and its physical processes. Through simultaneous solutions of the set of conservation e...Achieving an effective utilization and exploitation of TIG welding arcs require a thorough understanding of the plasma properties and its physical processes. Through simultaneous solutions of the set of conservation equations for mass, momentum, energy and current, a mathematical model has been developed to predict the velocity, temperature, and current density distributions in argon welding arcs. The predicted temperature fields in arc regions, and the distribution of current density and heat flux at the anode agree well with measurements reported in literatures. This work could lay the foundation for developing a comprehensive model of the TIG welding process where a dynamic, two-way coupling between the welding arc and the weld pool surface is properly represented.展开更多
文摘The interfacial reaction control of SiC_p/2124Al composites was investigated during pulsed argon arc welding. Meanwhile, the mechanical properties, the metallographic structure and interfacial microstructure of the induced welding joint were tested and detected, respectively. The results reveal that the joint with excellent properties could be achieved by the proper selection of the special filling material and the addition of the pulse during welding. Moreover, the formation mechanism of the welding joint was discussed and the corresponding measures on further improving the quality of the welding joint of SiC_p/2124Al composites were put forward in the condition of pulsed argon arc welding.
文摘The purpose of this research was to study the effect of Argon inert gas on the laser welding quality of Co-Cr and Ni-Cr base metal alloys, which are widely used as Fixed Prosthodontics alloys in Dental Laboratories. A total of 36 specimens were manufactured (18 of Ni-Cr alloy and 18 of Co-Cr alloy). The specimens were then divided into 3 subgroups (6 specimens each): control;argon-welded;and non-Argon welded. The specimens were cut, laser welded, radiographed and finally tested under tensile strength testing, followed by examination using Scanning Electron Microscopy. The tensile strength of welded specimens was lower than the strength of non-welded specimens, however this difference was not found to be statistically significant. The material factor (Co-Cr alloy or Ni-Cr alloy) has a statistically significant effect on the tensile strength, while the presence or not of the inert gas, as well as the combination of the two factors do not have a statistically significant effect. The laser welding process applied in daily practice (separation of specimen, formation of two cones in contact, aggregation of two cones, filling of the remaining gap by welding) is considered satisfactory in terms of weld strength. The factor of the material, as an independent factor, affects the tensile strength to a statistically significant degree, in contrast to the factor of the presence of inert gas which does not affect to a statistically significant degree.
文摘The tests of mechanical properties and weld properties and observations of microstructure were carriedout. The results show that the alloy has good strength properties at room and elevated ternperatures. It has excellent cold formability and goodweldability. The alloy will be very usable.
文摘Achieving an effective utilization and exploitation of TIG welding arcs require a thorough understanding of the plasma properties and its physical processes. Through simultaneous solutions of the set of conservation equations for mass, momentum, energy and current, a mathematical model has been developed to predict the velocity, temperature, and current density distributions in argon welding arcs. The predicted temperature fields in arc regions, and the distribution of current density and heat flux at the anode agree well with measurements reported in literatures. This work could lay the foundation for developing a comprehensive model of the TIG welding process where a dynamic, two-way coupling between the welding arc and the weld pool surface is properly represented.