Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth t...Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth to groundwater level(DGWL)and the impacts of climatic(precipitation,maximum temperature,and minimum temperature)and anthropogenic(gross district product(GDP),population,and net irrigated area(NIA))variables on DGWL during 1994-2020.The study considered DGWL in 113 observation wells and piezometers located in arid western plains(Barmer and Jodhpur districts)and semi-arid eastern plains(Jaipur,Ajmer,Dausa,and Tonk districts)of Rajasthan State,India.Statistical methods were employed to examine the annual and seasonal patterns of DGWL,and the generalized additive model(GAM)was used to determine the impacts of climatic and anthropogenic variables on DGWL.During 1994-2020,except for Barmer District,where the mean annual DGWL was almost constant(around 26.50 m),all other districts exhibited increase in DGWL,with Ajmer District experiencing the most increase.The results also revealed that 36 observation wells and piezometers showed a statistically significant annual increasing trend in DGWL and 34 observation wells and piezometers exhibited a statistically significant decreasing trend in DGWL.Similarly,32 observation wells and piezometers showed an statistically significant increasing trend and 37 observation wells and piezometers showed a statistically significant decreasing trend in winter;33 observation wells and piezometers indicated a statistically significant increasing trend and 34 had a statistically significant decreasing trend in post-monsoon;35 observation wells and piezometers exhibited a statistically significant increasing trend and 32 observation wells and piezometers showed a statistically significant decreasing trend in pre-monsoon;and 36 observation wells and piezometers reflected a statistically significant increasing trend and 30 observation wells and piezometers reflected a statistically significant decreasing trend in monsoon.Interestingly,most of the observation wells and piezometers with increasing trends of DGWL were located in Dausa and Jaipur districts.Furthermore,the GAM analysis revealed that climatic variables,such as precipitation,significantly affected DGWL in Barmer District,and DGWL in all other districts was influenced by anthropogenic variables,including GDP,NIA,and population.As a result,stringent regulations should be implemented to curb excessive groundwater extraction,manage agricultural water demand,initiate proactive aquifer recharge programs,and strengthen sustainable management in these water-scarce regions.展开更多
The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This regio...The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This region is prone to drought and is projected to experience a drier climate. Droughts that coincide with the critical phenological phases of a crop can be remarkably costly. Although drought cannot be prevented, its losses can be minimized through mitigation measures if it is predicted in advance. Predicting yield loss from an imminent drought is an important need of stakeholders. One way to fulfill this need is using an agricultural drought index, such as the Agricultural Reference Index for Drought (ARID). Being plant physiology-based, ARID can represent drought-yield relationships accurately. This study developed an ARID-based yield model for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to water stress. The reasonable values of the drought sensitivity coefficients of the yield model indicated that it could reflect the phenomenon of water stress decreasing the winter wheat yields in this region reasonably. The values of the various metrics used to evaluate the model, including Willmott Index (0.86), Nash-Sutcliffe Index (0.61), and percentage error (26), indicated that the yield model performed fairly well at predicting the drought-induced yield loss for winter wheat. The yield model may be useful for predicting the drought-induced yield loss for winter wheat in the study region and scheduling irrigation allocation based on phenological phase-specific drought sensitivity.展开更多
The countries of Central Asia are collectively known as the five "-stans": Uzbekistan, Kyrgyzstan, Turkmenistan, Tajikistan and Kazakhstan. In recent times, the Central Asian region has been affected by the ...The countries of Central Asia are collectively known as the five "-stans": Uzbekistan, Kyrgyzstan, Turkmenistan, Tajikistan and Kazakhstan. In recent times, the Central Asian region has been affected by the shrinkage of the Aral Sea, widespread desertification, soil salinization, biodiversity loss, frequent sand storms, and many other ecological disasters. This paper is a review article based upon the collection, identification and collation of previous studies of environmental changes and regional developments in Central Asia in the past 30 years. Most recent studies have reached a consensus that the temperature rise in Central Asia is occurring faster than the global average. This warming trend will not only result in a higher evaporation in the basin oases, but also to a significant retreat of glaciers in the mountainous areas. Water is the key to sustainable development in the arid and semi-arid regions in Central Asia. The uneven distribution, over consumption, and pollution of water resources in Central Asia have caused severe water supply problems, which have been affecting regional harmony and development for the past 30 years. The widespread and significant land use changes in the 1990 s could be used to improve our understanding of natural variability and human interaction in the region. There has been a positive trend of trans-border cooperation among the Central Asian countries in recent years. International attention has grown and research projects have been initiated to provide water and ecosystem protection in Central Asia. However, the agreements that have been reached might not be able to deliver practical action in time to prevent severe ecological disasters. Water management should be based on hydrographic borders and ministries should be able to make timely decisions without political intervention. Fully integrated management of water resources, land use and industrial development is essential in Central Asia. The ecological crisis should provide sufficient motivation to reach a consensus on unified water management throughout the region.展开更多
To improve the land surface simulation in the arid and semi-arid areas of northern China, the observational data from two field experiments in Dunhuang and Tongyu are used to optimize the parameters in the land surfac...To improve the land surface simulation in the arid and semi-arid areas of northern China, the observational data from two field experiments in Dunhuang and Tongyu are used to optimize the parameters in the land surface model, BATS, through calibration with the multicriteria method. Sensitivity analysis to the parameters in Dunhuang and Tongyu indicates that different parameters need to be calibrated in two sites with different environmental and climate regimes. Comparison of observed sensible heat flux, latent heat flux, and ground surface temperature with the simulated ones shows the simulations with the optimized parameters have been substantially improved. Especially, the holistic simulations with the calibration of the parameter values are much closer to the observations in the arid region (Dunhuang), and the energy partition with the calibrated parameters can also be simulated well in the semi-arid region (Tongyu). Whole results demonstrate that the parameter calibration of the land surface model is important when the model is to be used to investigate the land-air interaction.展开更多
There are eight provinces and autonomous regions(Gansu Province,Ningxia Hui Autonomous Region,Xinjiang Uygur Autonomous Region,Inner Mongolia Autonomous Region,Tibet Autonomous Region,Qinghai Province,Shanxi Province,...There are eight provinces and autonomous regions(Gansu Province,Ningxia Hui Autonomous Region,Xinjiang Uygur Autonomous Region,Inner Mongolia Autonomous Region,Tibet Autonomous Region,Qinghai Province,Shanxi Province,and Shaanxi Province)in Northwest China,most areas of which are located in arid and semi-arid regions(northwest of the 400 mm precipitation line),accounting for 58.74%of the country's land area and sustaining approximately 7.84×10^6 people.Because of drought conditions and fragile ecology,these regions cannot develop agriculture at the expense of the environment.Given the challenges of global warming,the green total factor productivity(GTFP),taking CO2 emissions as an undesirable output,is an effective index for measuring the sustainability of agricultural development.Agricultural GTFP can be influenced by both internal production factors(labor force,machinery,land,agricultural plastic film,diesel,pesticide,and fertilizer)and external climate factors(temperature,precipitation,and sunshine duration).In this study,we used the Super-slacks-based measure(Super-SBM)model to measure agricultural GTFP during the period 2000-2016 at the regional level.Our results show that the average agricultural GTFP of most provinces and autonomous regions in arid and semi-arid regions underwent a fluctuating increase during the study period(2000-2016),and the fluctuation was caused by the production factors(input and output factors).To improve agricultural GTFP,Shaanxi,Shanxi,and Gansu should reduce agricultural labor force input;Shaanxi,Inner Mongolia,Gansu,and Shanxi should decrease machinery input;Shaanxi,Inner Mongolia,Xinjiang,and Shanxi should reduce fertilizer input;Shaanxi,Xinjiang,Gansu,and Ningxia should reduce diesel input;Xinjiang and Gansu should decrease plastic film input;and Gansu,Shanxi,and Inner Mongolia should cut pesticide input.Desirable output agricultural earnings should be increased in Qinghai and Tibet,and undesirable output(CO2 emissions)should be reduced in Inner Mongolia,Xinjiang,Gansu,and Shaanxi.Agricultural GTFP is influenced not only by internal production factors but also by external climate factors.To determine the influence of climate factors on GTFP in these provinces and autonomous regions,we used a Geographical Detector(Geodetector)model to analyze the influence of climate factors(temperature,precipitation,and sunshine duration)and identify the relationships between different climate factors and GTFP.We found that temperature played a significant role in the spatial heterogeneity of GTFP among provinces and autonomous regions in arid and semi-arid regions.For Xinjiang,Inner Mongolia,and Tibet,a suitable average annual temperature would be in the range of 7℃-9℃;for Gansu,Shanxi,and Ningxia,it would be 11℃-13℃;and for Shaanxi,it would be 15℃-17℃.Stable climatic conditions and more efficient production are prerequisites for the development of sustainable agriculture.Hence,in the agricultural production process,reducing the redundancy of input factors is the best way to reduce CO2 emissions and to maintain temperatures,thereby improving the agricultural GTFP.The significance of this study is that it explores the impact of both internal production factors and external climatic factors on the development of sustainable agriculture in arid and semi-arid regions,identifying an effective way forward for the arid and semi-arid regions of Northwest China.展开更多
Dealing with the regional land surfaces heat fluxes over inhomogeneous land surfaces in arid and semi-arid areas is an important but not an easy issue. In this study, one parameterization method based on satellite rem...Dealing with the regional land surfaces heat fluxes over inhomogeneous land surfaces in arid and semi-arid areas is an important but not an easy issue. In this study, one parameterization method based on satellite remote sensing and field observations is proposed and tested for deriving the regional land surface heat fluxes over inhomogeneous landscapes. As a case study, the method is applied to the Dunhuang experimental area and the HEIFE (Heihe River Field Experiment, 1988-1994) area. The Dunhuang area is selected as a basic experimental area for the Chinese National Key Programme for Developing Basic Sciences: Research on the Formation Mechanism and Prediction Theory of Severe Climate Disaster in China (G1998040900, 1999-2003). The four scenes of Landsat TM data used in this study are 3 June 2000, 22 August 2000, and 29 January 2001 for the Dunhuang area and 9 July 1991 for the HEIFE area. The regional distributions of land surface variables, vegetation variables, and heat fluxes over inhomogeneous landscapes in arid and semi-arid areas are obtained in this study.展开更多
Taking Gansu province as a model case,this study provides an integrated analysis on the eco-economic system of arid and semi-arid region based on emergy synthesis theory. Through calculating the values of renewable em...Taking Gansu province as a model case,this study provides an integrated analysis on the eco-economic system of arid and semi-arid region based on emergy synthesis theory. Through calculating the values of renewable emergy flow,non-renewable resources,imported emergy,exported emergy,waste emergy,and total emergy during the period of 1978-2007,the performance of Gansu eco-economic system was analyzed. The results indicated that the renewable emergy flow within the province basically remained steady state which was estimated at 2.99×1022 solar emjoules (sej) from 1978 to 2007. The imported emergy and exported emergy were estimated at 3.75×1017 sej and 2.99×1020 sej in 1978 and increased to 1.07×1022 sej and 1.44×1022 sej respectively in 2007. The nonrenewable emergy flow was estimated at 1.62×1022 sej and increased to 1.85×1023 sej,with annual growth rate of 8.7%,while the estimated total emergy was 4.58×1022 sej in 1978 and increased to 2.11×1023 sej in 2007,with annual growth rate of 5.41%. Our results indicate a deteriorate situation between economic development and environmental protection in the region. The rapid economic growth in the past thirty years was based on a great consumption of nonrenewable resource and caused continuous decrease in the capacity of sustainable development. The environmental loading ratio was 0.53 in 1978,increased to 6.06 in 2007,indicating a rapid degradation of the regional environment quality. We calculated that the actual population was 1.53 times the renewable resource population in 1978,increased to 7.06 times in 2007. During the period of 1978-2007,the emergy rose from 2.45×1015 sej/(capita·a) to 8.07×1015 sej/(capita·a). Our analysis revealed that the emergy density presented a trend of gradual increase,and then the emergy currency ratio in Gansu decreased from 7.08×1013 sej/Chinese Yuan to 7.82×1012 sej/Chinese Yuan.展开更多
Climatic characteristics of broadband solarradiation (Rs) in Chinese arid and semi-arid areas are reported in this study. The annual average daily Rs in thearid and semi-arid areas is 16.3 ± 5.77 and 15.3 ± ...Climatic characteristics of broadband solarradiation (Rs) in Chinese arid and semi-arid areas are reported in this study. The annual average daily Rs in thearid and semi-arid areas is 16.3 ± 5.77 and 15.3 ± 5.16 MJm-2 d-1, respectively. The highest value (17.2 ± 5.84 MJm-2 d-1) appears in an arid area at Linze. The lowest valueappears in the semi-arid area of Ansai. Pronounced seasonal variation of Rs is observed with the highest value insummer and the lowest in winter. The clearness indexshowed similar seasonal pattern at most sites, with theminimum observed in the summer and the highest valuesin winter at both arid and semi-arid areas. The seasonalvariation of the ratio of Rs to its extraterrestrial value Kt inthe arid area is more significant than that observed in thesemi-arid region, and it is caused by the different range ofvariation of water vapor between arid and semi-arid areasThe seasonal fluctuations in Rs and Kt are mainly controlled by the water vapor content in these areas. Theaerosol particles have significant influence on Rs and Kt atstations with higher aerosol burden.展开更多
Runoff is a major component of the water cycle, and its multi-scale fluctuations are important to water resources management across arid and semi-arid regions. This paper coupled the Distributed Time Variant Gain Mod...Runoff is a major component of the water cycle, and its multi-scale fluctuations are important to water resources management across arid and semi-arid regions. This paper coupled the Distributed Time Variant Gain Model (DTVGM) into the Community Land Model (CLM 3.5), replacing the TOPMODEL-based method to simulate runoff in the arid and semi-arid regions of China. The coupled model was calibrated at five gauging stations for the period 1980-2005 and validated for the period 2006-2010. Then, future runoff (2010-2100) was simulated for different Representative Concentration Pathways (RCP) emission scenarios. After that, the spatial distributions of the future runoff for these scenarios were discussed, and the multi-scale fluctuation characteristics of the future annual runoff for the RCP scenarios were explored using the Ensemble Empirical Mode Decomposition (EEMD) analysis method. Finally, the decadal variabilities of the future annual runoff for the entire study area and the five catchments in it were investigated. The results showed that the future annual runoff had slowly decreasing trends for scenarios RCP 2.6 and RCP 8.5 during the period 2010-2100, whereas it had a non-monotonic trend for the RCP 4.5 scenario, with a slow increase after the 2050s. Additionally, the future annual runoff clearly varied over a decadal time scale, indicating that it had clear divisions between dry and wet periods. The longest dry period was approximately 15 years (2040-2055) for the RCP 2.6 scenario and 25 years (2045-2070) for the RCP 4.5 scenario. However, the RCP 8.5 scenario was predicted to have a long dry period starting from 2045. Under these scenarios, the water resources situation of the study area will be extremely severe. Therefore, adaptive water management measures addressing climate change should be adopted to proactively confront the risks of water resources.展开更多
Evapotranspiration is one the most important parameters in the hydrological cycle and plays a significant role in energy balance of the earth’s surface. Traditional field-based measurements approaches for calculation...Evapotranspiration is one the most important parameters in the hydrological cycle and plays a significant role in energy balance of the earth’s surface. Traditional field-based measurements approaches for calculation of daily evapotranspiration are valid only for local scales. Using advanced remote sensing technology, the spatial distribution of evapotranspiration may now be quantified more accurately. At the present study, daily evapotranspiration is estimated using Landsat 8 datasets based on the Surface Energy Balance System (SEBS) algorithm over the Zayanderud Dam area in central Iran. For this purpose, three Landsat 8 datasets in the years 2013, 2014 and 2015 covering the study area were atmospherically corrected using the FLAASH approach. The biophysical parameters of the earth’s surface for SEBS algorithm, such as normalized difference vegetation index (NDVI), Leaf area index (LAI), fractional vegetation cover (FC) were extracted from the visible and near infrared bands and land surface temperature was computed from thermal bands the Landsat 8 datasets. The spatial distribution of daily ET was provided separately for each year. In addition to the SEBS algorithm, the Penman-Monteith method was applied to estimate the daily ET from meteorological datasets which was obtained from two synoptic stations within the study area. Finally, the simulated daily ET values from both SEBS and Penman-Monteith method were compared to observed values obtained from a lysimeter within the study area. Although the estimated results from both SEBS and Penman-Monteith show a strong correlation with the observed values, the derived ET maps and following analysis demonstrated SEBS has higher accuracy and strength in estimation of daily ET in Zayanderud Dam region.展开更多
Soil organic matter (SOM) is an important term to realize soil productivity and quality that is extremely influential on soil physical, chemical and biological processes;SOM is one of the key soil properties controlli...Soil organic matter (SOM) is an important term to realize soil productivity and quality that is extremely influential on soil physical, chemical and biological processes;SOM is one of the key soil properties controlling nutrient budgets in agricultural production systems and is an important index of soil productivity. Remote sensing (RS) and Geographic Information System (GIS) techniques were used to assess organic matter in soil and determine the relationship between measures SOM in field and digital data to calculate or obtain the correlation coefficients applied to evaluate the strength and direction of the linear relationships. In this study Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI) and Bare Soil Index (BSI) were used. The results show that the relationship between vegetation indices (NDVI, SAVI) and SOM in whole study area was (R2 = 0.19, p 2 = 0.01, p 2 = 0.13, p 2 = 0.11, p < 0.05), soil organic carbon increases with increasing NDVI and decreasing BSI. NDVI, SAVI and BSI were considered a useful index to detect the spatial distribution of SOM concentrations and mapping using remote sensing data.展开更多
Trend and stationarity analysis of climatic variables are essential for understanding climate variability and provide useful information about the vulnerability and future changes,especially in arid and semi-arid regi...Trend and stationarity analysis of climatic variables are essential for understanding climate variability and provide useful information about the vulnerability and future changes,especially in arid and semi-arid regions.In this study,various climatic zones of Iran were investigated to assess the relationship between the trend and the stationarity of the climatic variables.The Mann-Kendall test was considered to identify the trend,while the trend free pre-whitening approach was applied for eliminating serial correlation from the time-series.Meanwhile,time series stationarity was tested by Dickey-Fuller and Kwiatkowski-Phillips-Schmidt-Shin tests.The results indicated an increasing trend for mean air temperature series at most of the stations over various climatic zones,however,after eliminating the serial correlation factor,this increasing trend changes to an insignificant decreasing trend at a 95%confidence level.The seasonal mean air temperature trend suggested a significant increase in the majority of the stations.The mean air temperature increased more in northwest towards central parts of Iran that mostly located in arid and semiarid climatic zones.Precipitation trend reveals an insignificant downward trend in most of the series over various climatic zones;furthermore,most of the stations follow a decreasing trend for seasonal precipitation.Furthermore,spatial patterns of trend and seasonality of precipitation and mean air temperature showed that the northwest parts of Iran and margin areas of the Caspian Sea are more vulnerable to the changing climate with respect to the precipitation shortfalls and warming.Stationarity analysis indicated that the stationarity of climatic series influences on their trend;so that,the series which have significant trends are not static.The findings of this investigation can help planners and policy-makers in various fields related to climatic issues,implementing better management and planning strategies to adapt to climate change and variability over Iran.展开更多
The magnitude and trend of temperature and rainfall extremes as indicators of climate variability and change were investigated in the Arid and Semi-Arid Lands (ASALs) of Kenya using in-situ measurements and gridded cl...The magnitude and trend of temperature and rainfall extremes as indicators of climate variability and change were investigated in the Arid and Semi-Arid Lands (ASALs) of Kenya using in-situ measurements and gridded climate proxy datasets, and analysed using the Gaussian-Kernel analysis and the Mann-Kendall statistics. The results show that the maximum and minimum temperatures have been increasing, with warmer temperatures being experienced mostly at night time. The average change in the mean maximum and minimum seasonal surface air temperature for the region were 0.74°C and 0.60°C, respectively between the 1961-1990 and 1991-2013 periods. Decreasing but statistically insignificant trends in the seasonal rainfall were noted in the area, but with mixed patterns in variability. The March-April-May rainfall season indicated the highest decrease in the seasonal rainfall amounts. The southern parts of the region had a decreasing trend in rainfall that was greater than that of the northern areas. The results of this study are expected to support sustainable pastoralism system prevalent with the local communities in the ASALs.展开更多
The relationship between time-space variation characteristics and the variation of the general atmospheric circulation of rainfall occurred in Asia, Africa through North Africa-Middle East-Western Middle Asia-Eastern ...The relationship between time-space variation characteristics and the variation of the general atmospheric circulation of rainfall occurred in Asia, Africa through North Africa-Middle East-Western Middle Asia-Eastern Middle Asia, Northwest China-Eastern Northwest China-North China and Northeast China is studied based on the analysis of GPCC rainfall data from 1901 to 2010 and annual precipitation in relevant cities of China from 1901 to 2010, and the data of NCEP of surface pressure as well as 500 Hpa potential high from 1950 to 2010. The result shows that the total precipitation presents a decreasing trend in north Africa to the northeast of China in recent 100 years. It has a mutation in 1950s. The precipitation presented a decreasing trend in North Africa and Middle East, in recent 100 years;it presented a further decreasing trend after 1950s. It presented a decreasing trend before 1950s and an increasing trend after 1950s in Middle Asia and Northwest china. It also presented a decreasing trend before 1950s and an increasing trend between 1950s to 1990s, and decreased later in Eastern Northwest China, North China and Northeast China which also presented in a more or less period in different areas from North Africa to Northeast China. The beginning of less precipitation years and less period occurred after it presented less period in north Africa in time and space. After it moved to the east areas as the year past, at last, the SLPA fields which presented more or less precipitations of years from North Africa to Northeast China were analyzed. It also shows that the SLPA fields which presented more were beneficial to the precipitations and presented negative effects of precipitations in the polar, high and mid- and lower latitudes.展开更多
Weather extremes negatively affect socioeconomic developments in arid and semi-arid areas (ASALs) and increase vulnerability of residents to food and water insecurity. Thus, communities adapt to such extremes of weath...Weather extremes negatively affect socioeconomic developments in arid and semi-arid areas (ASALs) and increase vulnerability of residents to food and water insecurity. Thus, communities adapt to such extremes of weather using Traditional Ecological Knowledge (TEK) and/or Modern Technologies. Modern farming technologies and land resource developments in ASALs have in past ignored TEK, and in most cases led to undesired outcomes. It’s against this backdrop that this study was conceived to assess TEK among the Turkana people, its application and contribution to food and water security. The research adopted a cross-sectional social survey in collecting data from Central Turkana Sub-County residents. The study revealed that the Turkana people possess vast knowledge related to their environment;that this TEK plays a significant role in food production, preservation and in natural resource management. For instance, in 82% of the respondents use TEK in enhancing livestock production through the selection of livestock species that are suitable and drought tolerant;over 70% of them use TEK in reducing risk associated with livestock losses due to prolonged droughts. Further, TEK influenced the development and conservation of the water resources (r = 0.631;p < 0.01) including siting boreholes and wells. There was a strong correlation (r = 0.755;p < 0.01) between TEK and food security. TEK should be incorporated into the decision-making processes involving development projects within the ASALs.展开更多
The lack of water in arid and semi-arid regions has often limited agricultural production. Indeed, even where water is available for irrigation, the lack of electricity, as well as the high costs of diesel, has create...The lack of water in arid and semi-arid regions has often limited agricultural production. Indeed, even where water is available for irrigation, the lack of electricity, as well as the high costs of diesel, has created constraints on small farmers. The purpose of this research is to review the renewable energy potential available in arid and semi-arid zones that can be used for irrigation as a substitute for fossil fuels. In this review, the solar thermal irrigation, solar photovoltaic (PV) irrigation, wind pumping and biomass pumping are discussed. The comparison of different hybrid pumping systems and analyses of renewable sources irrigation assessment in arid and semi-arid regions of Mozambique also are discussed. The results of this study showed that there are still certain technological limitations regarding the use of solar thermal energy for irrigation. As far as wind power is concerned, the analysis of the pumping water life cycle cost showed that the wind power water pumping system is more economical and viable compared to the diesel based system. However, the study concluded that photovoltaic solar energy has been shown to be more viable for pumping water for irrigation in arid and semi-arid regions.展开更多
Freshwater salinization is receiving increasing global attention due to its profound influence on nitrogen cycling in aquatic ecosystems and the accessibility of water resources.However,a comprehensive understanding o...Freshwater salinization is receiving increasing global attention due to its profound influence on nitrogen cycling in aquatic ecosystems and the accessibility of water resources.However,a comprehensive understanding of the changes in river salinization and the impacts of salinity on nitrogen cycling in arid and semi-arid regions of China is currently lacking.A meta-analysis was first conducted based on previous investigations and found an intensification in river salinization that altered hydrochemical characteristics.To further analyze the impact of salinity on nitrogen metabolism processes,we evaluated rivers with long-term salinity gradients based on in situ observations.The genes and enzymes that were inhibited generally by salinity,especially those involved in nitrogen fixation and nitrification,showed low abundances in three salinity levels.The abundance of genes and enzymes with denitrification and dissimilatory nitrate reduction to ammonium functions still maintained a high proportion,especially for denitrification genes/enzymes that were enriched under medium salinity.Denitrifying bacteria exhibited various relationships with salinity,while dissimilatory nitrate reduction to ammonium bacterium(such as Hydrogenophaga and Curvibacter carrying nirB)were more inhibited by salinity,indicating that diverse denitrifying bacteria could be used to regulate nitrogen concentration.Most genera exhibited symbiotic and mutual relationships,and the highest proportion of significant positive correlations of abundant genera was found under medium salinity.This study emphasizes the role of river salinity on environment characteristics and nitrogen transformation rules,and our results are useful for improving the availability of river water resources in arid and semi-arid regions.展开更多
Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with comp...Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.展开更多
Wheat (Triticum aestivum L.) production is a major economic activity in most regional and rural areas in the Southern Plains, a semi-arid region of the United States. This region is vulnerable to drought and is projec...Wheat (Triticum aestivum L.) production is a major economic activity in most regional and rural areas in the Southern Plains, a semi-arid region of the United States. This region is vulnerable to drought and is projected to experience a drier climate in the future. Since the interannual variability in climate in this region is linked to an ocean-atmospheric phenomenon, called El Niño-Southern Oscillation (ENSO), droughts in this region may be associated with ENSO. Droughts that occur during the critical growth phases of wheat can be extremely costly. However, the losses due to an impending drought can be minimized through mitigation measures if it is predicted in advance. Predicting the yield loss from an imminent drought is crucial for stakeholders. One of the reliable ways for such prediction is using a plant physiology-based agricultural drought index, such as Agricultural Reference Index for Drought (ARID). This study developed ENSO phase-specific, ARID-based models for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to drought. The reasonable values of the drought sensitivity coefficients of the yield model for each ENSO phase (El Niño, La Niña, or Neutral) indicated that the yield models reflected reasonably well the phenomena of water stress decreasing the winter wheat yields in this region during different ENSO phases. The values of various goodness-of-fit measures used, including the Nash-Sutcliffe Index (0.54 to 0.67), the Willmott Index (0.82 to 0.89), and the percentage error (20 to 26), indicated that the yield models performed fairly well at predicting the ENSO phase-specific loss of wheat yields from drought. This yield model may be useful for predicting yield loss from drought and scheduling irrigation allocation based on the phenological phase-specific sensitivity to drought as impacted by ENSO.展开更多
文摘Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth to groundwater level(DGWL)and the impacts of climatic(precipitation,maximum temperature,and minimum temperature)and anthropogenic(gross district product(GDP),population,and net irrigated area(NIA))variables on DGWL during 1994-2020.The study considered DGWL in 113 observation wells and piezometers located in arid western plains(Barmer and Jodhpur districts)and semi-arid eastern plains(Jaipur,Ajmer,Dausa,and Tonk districts)of Rajasthan State,India.Statistical methods were employed to examine the annual and seasonal patterns of DGWL,and the generalized additive model(GAM)was used to determine the impacts of climatic and anthropogenic variables on DGWL.During 1994-2020,except for Barmer District,where the mean annual DGWL was almost constant(around 26.50 m),all other districts exhibited increase in DGWL,with Ajmer District experiencing the most increase.The results also revealed that 36 observation wells and piezometers showed a statistically significant annual increasing trend in DGWL and 34 observation wells and piezometers exhibited a statistically significant decreasing trend in DGWL.Similarly,32 observation wells and piezometers showed an statistically significant increasing trend and 37 observation wells and piezometers showed a statistically significant decreasing trend in winter;33 observation wells and piezometers indicated a statistically significant increasing trend and 34 had a statistically significant decreasing trend in post-monsoon;35 observation wells and piezometers exhibited a statistically significant increasing trend and 32 observation wells and piezometers showed a statistically significant decreasing trend in pre-monsoon;and 36 observation wells and piezometers reflected a statistically significant increasing trend and 30 observation wells and piezometers reflected a statistically significant decreasing trend in monsoon.Interestingly,most of the observation wells and piezometers with increasing trends of DGWL were located in Dausa and Jaipur districts.Furthermore,the GAM analysis revealed that climatic variables,such as precipitation,significantly affected DGWL in Barmer District,and DGWL in all other districts was influenced by anthropogenic variables,including GDP,NIA,and population.As a result,stringent regulations should be implemented to curb excessive groundwater extraction,manage agricultural water demand,initiate proactive aquifer recharge programs,and strengthen sustainable management in these water-scarce regions.
文摘The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This region is prone to drought and is projected to experience a drier climate. Droughts that coincide with the critical phenological phases of a crop can be remarkably costly. Although drought cannot be prevented, its losses can be minimized through mitigation measures if it is predicted in advance. Predicting yield loss from an imminent drought is an important need of stakeholders. One way to fulfill this need is using an agricultural drought index, such as the Agricultural Reference Index for Drought (ARID). Being plant physiology-based, ARID can represent drought-yield relationships accurately. This study developed an ARID-based yield model for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to water stress. The reasonable values of the drought sensitivity coefficients of the yield model indicated that it could reflect the phenomenon of water stress decreasing the winter wheat yields in this region reasonably. The values of the various metrics used to evaluate the model, including Willmott Index (0.86), Nash-Sutcliffe Index (0.61), and percentage error (26), indicated that the yield model performed fairly well at predicting the drought-induced yield loss for winter wheat. The yield model may be useful for predicting the drought-induced yield loss for winter wheat in the study region and scheduling irrigation allocation based on phenological phase-specific drought sensitivity.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Pan-Third Pole Environment Study for a Green Silk Road (XDA20060303)the Xinjiang Key Research and Development Program (2016B02017-4)+1 种基金the National Nature Science Foundation of China-United Nations Environment Programme (NSFC-UNEP, 41361140361)the ''High-level Talents Project'' (Y871171) of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences
文摘The countries of Central Asia are collectively known as the five "-stans": Uzbekistan, Kyrgyzstan, Turkmenistan, Tajikistan and Kazakhstan. In recent times, the Central Asian region has been affected by the shrinkage of the Aral Sea, widespread desertification, soil salinization, biodiversity loss, frequent sand storms, and many other ecological disasters. This paper is a review article based upon the collection, identification and collation of previous studies of environmental changes and regional developments in Central Asia in the past 30 years. Most recent studies have reached a consensus that the temperature rise in Central Asia is occurring faster than the global average. This warming trend will not only result in a higher evaporation in the basin oases, but also to a significant retreat of glaciers in the mountainous areas. Water is the key to sustainable development in the arid and semi-arid regions in Central Asia. The uneven distribution, over consumption, and pollution of water resources in Central Asia have caused severe water supply problems, which have been affecting regional harmony and development for the past 30 years. The widespread and significant land use changes in the 1990 s could be used to improve our understanding of natural variability and human interaction in the region. There has been a positive trend of trans-border cooperation among the Central Asian countries in recent years. International attention has grown and research projects have been initiated to provide water and ecosystem protection in Central Asia. However, the agreements that have been reached might not be able to deliver practical action in time to prevent severe ecological disasters. Water management should be based on hydrographic borders and ministries should be able to make timely decisions without political intervention. Fully integrated management of water resources, land use and industrial development is essential in Central Asia. The ecological crisis should provide sufficient motivation to reach a consensus on unified water management throughout the region.
基金supported jointlyby the Chinese Academy of Sciences under Grant KZCX2-YW-220the National Basic Research Program of Chinaunder Grant 2009CB421405the National Natural Sci-ence Foundation of China under Grant No.40730952
文摘To improve the land surface simulation in the arid and semi-arid areas of northern China, the observational data from two field experiments in Dunhuang and Tongyu are used to optimize the parameters in the land surface model, BATS, through calibration with the multicriteria method. Sensitivity analysis to the parameters in Dunhuang and Tongyu indicates that different parameters need to be calibrated in two sites with different environmental and climate regimes. Comparison of observed sensible heat flux, latent heat flux, and ground surface temperature with the simulated ones shows the simulations with the optimized parameters have been substantially improved. Especially, the holistic simulations with the calibration of the parameter values are much closer to the observations in the arid region (Dunhuang), and the energy partition with the calibrated parameters can also be simulated well in the semi-arid region (Tongyu). Whole results demonstrate that the parameter calibration of the land surface model is important when the model is to be used to investigate the land-air interaction.
基金the National Natural Science Foundation of China(71974176,71473233)the Chinese Academy of Sciences(CAS)"Light of West China"Program(2018-XBQNXZ-B-017)+1 种基金the High Level Talent Introduction Project of Xinjiang Uygur Autonomous Region(Y942171)the"High Talents Program of Xinjiang Institute of Ecology and Geography,CAS"(Y871171).
文摘There are eight provinces and autonomous regions(Gansu Province,Ningxia Hui Autonomous Region,Xinjiang Uygur Autonomous Region,Inner Mongolia Autonomous Region,Tibet Autonomous Region,Qinghai Province,Shanxi Province,and Shaanxi Province)in Northwest China,most areas of which are located in arid and semi-arid regions(northwest of the 400 mm precipitation line),accounting for 58.74%of the country's land area and sustaining approximately 7.84×10^6 people.Because of drought conditions and fragile ecology,these regions cannot develop agriculture at the expense of the environment.Given the challenges of global warming,the green total factor productivity(GTFP),taking CO2 emissions as an undesirable output,is an effective index for measuring the sustainability of agricultural development.Agricultural GTFP can be influenced by both internal production factors(labor force,machinery,land,agricultural plastic film,diesel,pesticide,and fertilizer)and external climate factors(temperature,precipitation,and sunshine duration).In this study,we used the Super-slacks-based measure(Super-SBM)model to measure agricultural GTFP during the period 2000-2016 at the regional level.Our results show that the average agricultural GTFP of most provinces and autonomous regions in arid and semi-arid regions underwent a fluctuating increase during the study period(2000-2016),and the fluctuation was caused by the production factors(input and output factors).To improve agricultural GTFP,Shaanxi,Shanxi,and Gansu should reduce agricultural labor force input;Shaanxi,Inner Mongolia,Gansu,and Shanxi should decrease machinery input;Shaanxi,Inner Mongolia,Xinjiang,and Shanxi should reduce fertilizer input;Shaanxi,Xinjiang,Gansu,and Ningxia should reduce diesel input;Xinjiang and Gansu should decrease plastic film input;and Gansu,Shanxi,and Inner Mongolia should cut pesticide input.Desirable output agricultural earnings should be increased in Qinghai and Tibet,and undesirable output(CO2 emissions)should be reduced in Inner Mongolia,Xinjiang,Gansu,and Shaanxi.Agricultural GTFP is influenced not only by internal production factors but also by external climate factors.To determine the influence of climate factors on GTFP in these provinces and autonomous regions,we used a Geographical Detector(Geodetector)model to analyze the influence of climate factors(temperature,precipitation,and sunshine duration)and identify the relationships between different climate factors and GTFP.We found that temperature played a significant role in the spatial heterogeneity of GTFP among provinces and autonomous regions in arid and semi-arid regions.For Xinjiang,Inner Mongolia,and Tibet,a suitable average annual temperature would be in the range of 7℃-9℃;for Gansu,Shanxi,and Ningxia,it would be 11℃-13℃;and for Shaanxi,it would be 15℃-17℃.Stable climatic conditions and more efficient production are prerequisites for the development of sustainable agriculture.Hence,in the agricultural production process,reducing the redundancy of input factors is the best way to reduce CO2 emissions and to maintain temperatures,thereby improving the agricultural GTFP.The significance of this study is that it explores the impact of both internal production factors and external climatic factors on the development of sustainable agriculture in arid and semi-arid regions,identifying an effective way forward for the arid and semi-arid regions of Northwest China.
文摘Dealing with the regional land surfaces heat fluxes over inhomogeneous land surfaces in arid and semi-arid areas is an important but not an easy issue. In this study, one parameterization method based on satellite remote sensing and field observations is proposed and tested for deriving the regional land surface heat fluxes over inhomogeneous landscapes. As a case study, the method is applied to the Dunhuang experimental area and the HEIFE (Heihe River Field Experiment, 1988-1994) area. The Dunhuang area is selected as a basic experimental area for the Chinese National Key Programme for Developing Basic Sciences: Research on the Formation Mechanism and Prediction Theory of Severe Climate Disaster in China (G1998040900, 1999-2003). The four scenes of Landsat TM data used in this study are 3 June 2000, 22 August 2000, and 29 January 2001 for the Dunhuang area and 9 July 1991 for the HEIFE area. The regional distributions of land surface variables, vegetation variables, and heat fluxes over inhomogeneous landscapes in arid and semi-arid areas are obtained in this study.
基金funded by the Natural Science Foundation of China (40871061)Initial Fund for Doctors of Institute of Applied Ecology at Chinese Academy of Sciences (Y0SBS161S3)+2 种基金100 Talents Program of the Chinese Academy of Sciences (08YBR111SS)Shenyang Bureau of Science and Technology (1091147-9-00)Natural Science Foundation of Liaoning province (20092078)
文摘Taking Gansu province as a model case,this study provides an integrated analysis on the eco-economic system of arid and semi-arid region based on emergy synthesis theory. Through calculating the values of renewable emergy flow,non-renewable resources,imported emergy,exported emergy,waste emergy,and total emergy during the period of 1978-2007,the performance of Gansu eco-economic system was analyzed. The results indicated that the renewable emergy flow within the province basically remained steady state which was estimated at 2.99×1022 solar emjoules (sej) from 1978 to 2007. The imported emergy and exported emergy were estimated at 3.75×1017 sej and 2.99×1020 sej in 1978 and increased to 1.07×1022 sej and 1.44×1022 sej respectively in 2007. The nonrenewable emergy flow was estimated at 1.62×1022 sej and increased to 1.85×1023 sej,with annual growth rate of 8.7%,while the estimated total emergy was 4.58×1022 sej in 1978 and increased to 2.11×1023 sej in 2007,with annual growth rate of 5.41%. Our results indicate a deteriorate situation between economic development and environmental protection in the region. The rapid economic growth in the past thirty years was based on a great consumption of nonrenewable resource and caused continuous decrease in the capacity of sustainable development. The environmental loading ratio was 0.53 in 1978,increased to 6.06 in 2007,indicating a rapid degradation of the regional environment quality. We calculated that the actual population was 1.53 times the renewable resource population in 1978,increased to 7.06 times in 2007. During the period of 1978-2007,the emergy rose from 2.45×1015 sej/(capita·a) to 8.07×1015 sej/(capita·a). Our analysis revealed that the emergy density presented a trend of gradual increase,and then the emergy currency ratio in Gansu decreased from 7.08×1013 sej/Chinese Yuan to 7.82×1012 sej/Chinese Yuan.
基金supported by the National Basic Research Program of China (Grant No. 2006CB403702)the National High Technology Research and Development Program of China (Grant No. 2006AA06A301)
文摘Climatic characteristics of broadband solarradiation (Rs) in Chinese arid and semi-arid areas are reported in this study. The annual average daily Rs in thearid and semi-arid areas is 16.3 ± 5.77 and 15.3 ± 5.16 MJm-2 d-1, respectively. The highest value (17.2 ± 5.84 MJm-2 d-1) appears in an arid area at Linze. The lowest valueappears in the semi-arid area of Ansai. Pronounced seasonal variation of Rs is observed with the highest value insummer and the lowest in winter. The clearness indexshowed similar seasonal pattern at most sites, with theminimum observed in the summer and the highest valuesin winter at both arid and semi-arid areas. The seasonalvariation of the ratio of Rs to its extraterrestrial value Kt inthe arid area is more significant than that observed in thesemi-arid region, and it is caused by the different range ofvariation of water vapor between arid and semi-arid areasThe seasonal fluctuations in Rs and Kt are mainly controlled by the water vapor content in these areas. Theaerosol particles have significant influence on Rs and Kt atstations with higher aerosol burden.
基金supported by the National Basic Research Program of China(2012CB956204)We acknowledge the modeling groups for providing the data for analysis,the Program for Climate Model Diagnosis and Intercomparison(PCMDI)the World Climate Research Programme’s(WCRP’s)Coupled Model Intercomparison Project for collecting and archiving the model output and organizing the data analysis
文摘Runoff is a major component of the water cycle, and its multi-scale fluctuations are important to water resources management across arid and semi-arid regions. This paper coupled the Distributed Time Variant Gain Model (DTVGM) into the Community Land Model (CLM 3.5), replacing the TOPMODEL-based method to simulate runoff in the arid and semi-arid regions of China. The coupled model was calibrated at five gauging stations for the period 1980-2005 and validated for the period 2006-2010. Then, future runoff (2010-2100) was simulated for different Representative Concentration Pathways (RCP) emission scenarios. After that, the spatial distributions of the future runoff for these scenarios were discussed, and the multi-scale fluctuation characteristics of the future annual runoff for the RCP scenarios were explored using the Ensemble Empirical Mode Decomposition (EEMD) analysis method. Finally, the decadal variabilities of the future annual runoff for the entire study area and the five catchments in it were investigated. The results showed that the future annual runoff had slowly decreasing trends for scenarios RCP 2.6 and RCP 8.5 during the period 2010-2100, whereas it had a non-monotonic trend for the RCP 4.5 scenario, with a slow increase after the 2050s. Additionally, the future annual runoff clearly varied over a decadal time scale, indicating that it had clear divisions between dry and wet periods. The longest dry period was approximately 15 years (2040-2055) for the RCP 2.6 scenario and 25 years (2045-2070) for the RCP 4.5 scenario. However, the RCP 8.5 scenario was predicted to have a long dry period starting from 2045. Under these scenarios, the water resources situation of the study area will be extremely severe. Therefore, adaptive water management measures addressing climate change should be adopted to proactively confront the risks of water resources.
文摘Evapotranspiration is one the most important parameters in the hydrological cycle and plays a significant role in energy balance of the earth’s surface. Traditional field-based measurements approaches for calculation of daily evapotranspiration are valid only for local scales. Using advanced remote sensing technology, the spatial distribution of evapotranspiration may now be quantified more accurately. At the present study, daily evapotranspiration is estimated using Landsat 8 datasets based on the Surface Energy Balance System (SEBS) algorithm over the Zayanderud Dam area in central Iran. For this purpose, three Landsat 8 datasets in the years 2013, 2014 and 2015 covering the study area were atmospherically corrected using the FLAASH approach. The biophysical parameters of the earth’s surface for SEBS algorithm, such as normalized difference vegetation index (NDVI), Leaf area index (LAI), fractional vegetation cover (FC) were extracted from the visible and near infrared bands and land surface temperature was computed from thermal bands the Landsat 8 datasets. The spatial distribution of daily ET was provided separately for each year. In addition to the SEBS algorithm, the Penman-Monteith method was applied to estimate the daily ET from meteorological datasets which was obtained from two synoptic stations within the study area. Finally, the simulated daily ET values from both SEBS and Penman-Monteith method were compared to observed values obtained from a lysimeter within the study area. Although the estimated results from both SEBS and Penman-Monteith show a strong correlation with the observed values, the derived ET maps and following analysis demonstrated SEBS has higher accuracy and strength in estimation of daily ET in Zayanderud Dam region.
文摘Soil organic matter (SOM) is an important term to realize soil productivity and quality that is extremely influential on soil physical, chemical and biological processes;SOM is one of the key soil properties controlling nutrient budgets in agricultural production systems and is an important index of soil productivity. Remote sensing (RS) and Geographic Information System (GIS) techniques were used to assess organic matter in soil and determine the relationship between measures SOM in field and digital data to calculate or obtain the correlation coefficients applied to evaluate the strength and direction of the linear relationships. In this study Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI) and Bare Soil Index (BSI) were used. The results show that the relationship between vegetation indices (NDVI, SAVI) and SOM in whole study area was (R2 = 0.19, p 2 = 0.01, p 2 = 0.13, p 2 = 0.11, p < 0.05), soil organic carbon increases with increasing NDVI and decreasing BSI. NDVI, SAVI and BSI were considered a useful index to detect the spatial distribution of SOM concentrations and mapping using remote sensing data.
文摘Trend and stationarity analysis of climatic variables are essential for understanding climate variability and provide useful information about the vulnerability and future changes,especially in arid and semi-arid regions.In this study,various climatic zones of Iran were investigated to assess the relationship between the trend and the stationarity of the climatic variables.The Mann-Kendall test was considered to identify the trend,while the trend free pre-whitening approach was applied for eliminating serial correlation from the time-series.Meanwhile,time series stationarity was tested by Dickey-Fuller and Kwiatkowski-Phillips-Schmidt-Shin tests.The results indicated an increasing trend for mean air temperature series at most of the stations over various climatic zones,however,after eliminating the serial correlation factor,this increasing trend changes to an insignificant decreasing trend at a 95%confidence level.The seasonal mean air temperature trend suggested a significant increase in the majority of the stations.The mean air temperature increased more in northwest towards central parts of Iran that mostly located in arid and semiarid climatic zones.Precipitation trend reveals an insignificant downward trend in most of the series over various climatic zones;furthermore,most of the stations follow a decreasing trend for seasonal precipitation.Furthermore,spatial patterns of trend and seasonality of precipitation and mean air temperature showed that the northwest parts of Iran and margin areas of the Caspian Sea are more vulnerable to the changing climate with respect to the precipitation shortfalls and warming.Stationarity analysis indicated that the stationarity of climatic series influences on their trend;so that,the series which have significant trends are not static.The findings of this investigation can help planners and policy-makers in various fields related to climatic issues,implementing better management and planning strategies to adapt to climate change and variability over Iran.
文摘The magnitude and trend of temperature and rainfall extremes as indicators of climate variability and change were investigated in the Arid and Semi-Arid Lands (ASALs) of Kenya using in-situ measurements and gridded climate proxy datasets, and analysed using the Gaussian-Kernel analysis and the Mann-Kendall statistics. The results show that the maximum and minimum temperatures have been increasing, with warmer temperatures being experienced mostly at night time. The average change in the mean maximum and minimum seasonal surface air temperature for the region were 0.74°C and 0.60°C, respectively between the 1961-1990 and 1991-2013 periods. Decreasing but statistically insignificant trends in the seasonal rainfall were noted in the area, but with mixed patterns in variability. The March-April-May rainfall season indicated the highest decrease in the seasonal rainfall amounts. The southern parts of the region had a decreasing trend in rainfall that was greater than that of the northern areas. The results of this study are expected to support sustainable pastoralism system prevalent with the local communities in the ASALs.
文摘The relationship between time-space variation characteristics and the variation of the general atmospheric circulation of rainfall occurred in Asia, Africa through North Africa-Middle East-Western Middle Asia-Eastern Middle Asia, Northwest China-Eastern Northwest China-North China and Northeast China is studied based on the analysis of GPCC rainfall data from 1901 to 2010 and annual precipitation in relevant cities of China from 1901 to 2010, and the data of NCEP of surface pressure as well as 500 Hpa potential high from 1950 to 2010. The result shows that the total precipitation presents a decreasing trend in north Africa to the northeast of China in recent 100 years. It has a mutation in 1950s. The precipitation presented a decreasing trend in North Africa and Middle East, in recent 100 years;it presented a further decreasing trend after 1950s. It presented a decreasing trend before 1950s and an increasing trend after 1950s in Middle Asia and Northwest china. It also presented a decreasing trend before 1950s and an increasing trend between 1950s to 1990s, and decreased later in Eastern Northwest China, North China and Northeast China which also presented in a more or less period in different areas from North Africa to Northeast China. The beginning of less precipitation years and less period occurred after it presented less period in north Africa in time and space. After it moved to the east areas as the year past, at last, the SLPA fields which presented more or less precipitations of years from North Africa to Northeast China were analyzed. It also shows that the SLPA fields which presented more were beneficial to the precipitations and presented negative effects of precipitations in the polar, high and mid- and lower latitudes.
文摘Weather extremes negatively affect socioeconomic developments in arid and semi-arid areas (ASALs) and increase vulnerability of residents to food and water insecurity. Thus, communities adapt to such extremes of weather using Traditional Ecological Knowledge (TEK) and/or Modern Technologies. Modern farming technologies and land resource developments in ASALs have in past ignored TEK, and in most cases led to undesired outcomes. It’s against this backdrop that this study was conceived to assess TEK among the Turkana people, its application and contribution to food and water security. The research adopted a cross-sectional social survey in collecting data from Central Turkana Sub-County residents. The study revealed that the Turkana people possess vast knowledge related to their environment;that this TEK plays a significant role in food production, preservation and in natural resource management. For instance, in 82% of the respondents use TEK in enhancing livestock production through the selection of livestock species that are suitable and drought tolerant;over 70% of them use TEK in reducing risk associated with livestock losses due to prolonged droughts. Further, TEK influenced the development and conservation of the water resources (r = 0.631;p < 0.01) including siting boreholes and wells. There was a strong correlation (r = 0.755;p < 0.01) between TEK and food security. TEK should be incorporated into the decision-making processes involving development projects within the ASALs.
文摘The lack of water in arid and semi-arid regions has often limited agricultural production. Indeed, even where water is available for irrigation, the lack of electricity, as well as the high costs of diesel, has created constraints on small farmers. The purpose of this research is to review the renewable energy potential available in arid and semi-arid zones that can be used for irrigation as a substitute for fossil fuels. In this review, the solar thermal irrigation, solar photovoltaic (PV) irrigation, wind pumping and biomass pumping are discussed. The comparison of different hybrid pumping systems and analyses of renewable sources irrigation assessment in arid and semi-arid regions of Mozambique also are discussed. The results of this study showed that there are still certain technological limitations regarding the use of solar thermal energy for irrigation. As far as wind power is concerned, the analysis of the pumping water life cycle cost showed that the wind power water pumping system is more economical and viable compared to the diesel based system. However, the study concluded that photovoltaic solar energy has been shown to be more viable for pumping water for irrigation in arid and semi-arid regions.
基金supported by the Innovative team project of Nanjing Institute of Environmental Sciences,MEE(GYZX200101)the National Natural Science Foundation of China(52270160,and U23A2058)+1 种基金the Key R&D Program of Ningxia Hui Autonomous Region(2021BEG01002)the Xinjiang UygurAutonomous Region Science and Technology ProgramPlan(2022E02026)the SuperG project of EUHorizon 2020 program(774124).
文摘Freshwater salinization is receiving increasing global attention due to its profound influence on nitrogen cycling in aquatic ecosystems and the accessibility of water resources.However,a comprehensive understanding of the changes in river salinization and the impacts of salinity on nitrogen cycling in arid and semi-arid regions of China is currently lacking.A meta-analysis was first conducted based on previous investigations and found an intensification in river salinization that altered hydrochemical characteristics.To further analyze the impact of salinity on nitrogen metabolism processes,we evaluated rivers with long-term salinity gradients based on in situ observations.The genes and enzymes that were inhibited generally by salinity,especially those involved in nitrogen fixation and nitrification,showed low abundances in three salinity levels.The abundance of genes and enzymes with denitrification and dissimilatory nitrate reduction to ammonium functions still maintained a high proportion,especially for denitrification genes/enzymes that were enriched under medium salinity.Denitrifying bacteria exhibited various relationships with salinity,while dissimilatory nitrate reduction to ammonium bacterium(such as Hydrogenophaga and Curvibacter carrying nirB)were more inhibited by salinity,indicating that diverse denitrifying bacteria could be used to regulate nitrogen concentration.Most genera exhibited symbiotic and mutual relationships,and the highest proportion of significant positive correlations of abundant genera was found under medium salinity.This study emphasizes the role of river salinity on environment characteristics and nitrogen transformation rules,and our results are useful for improving the availability of river water resources in arid and semi-arid regions.
基金This research was supported by the Third Xinjiang Scientific Expedition Program(2021xjkk010102)the National Natural Science Foundation of China(41261047,41761043)+1 种基金the Science and Technology Plan of Gansu Province,China(20YF3FA042)the Youth Teacher Scientific Capability Promoting Project of Northwest Normal University,Gansu Province,China(NWNU-LKQN-17-7).
文摘Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.
文摘Wheat (Triticum aestivum L.) production is a major economic activity in most regional and rural areas in the Southern Plains, a semi-arid region of the United States. This region is vulnerable to drought and is projected to experience a drier climate in the future. Since the interannual variability in climate in this region is linked to an ocean-atmospheric phenomenon, called El Niño-Southern Oscillation (ENSO), droughts in this region may be associated with ENSO. Droughts that occur during the critical growth phases of wheat can be extremely costly. However, the losses due to an impending drought can be minimized through mitigation measures if it is predicted in advance. Predicting the yield loss from an imminent drought is crucial for stakeholders. One of the reliable ways for such prediction is using a plant physiology-based agricultural drought index, such as Agricultural Reference Index for Drought (ARID). This study developed ENSO phase-specific, ARID-based models for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to drought. The reasonable values of the drought sensitivity coefficients of the yield model for each ENSO phase (El Niño, La Niña, or Neutral) indicated that the yield models reflected reasonably well the phenomena of water stress decreasing the winter wheat yields in this region during different ENSO phases. The values of various goodness-of-fit measures used, including the Nash-Sutcliffe Index (0.54 to 0.67), the Willmott Index (0.82 to 0.89), and the percentage error (20 to 26), indicated that the yield models performed fairly well at predicting the ENSO phase-specific loss of wheat yields from drought. This yield model may be useful for predicting yield loss from drought and scheduling irrigation allocation based on the phenological phase-specific sensitivity to drought as impacted by ENSO.