In response to the frequent safety accidents of industrial robots, this paper designs and implements a safety detection system for robot control. It can perform real-time security detection of robot operations on indu...In response to the frequent safety accidents of industrial robots, this paper designs and implements a safety detection system for robot control. It can perform real-time security detection of robot operations on industrial production lines to improve the security and reliability of robot control systems. This paper designs and implements a robot control system based Snort-BASE for real-time online detection of DoS attacks. The system uses a six-degree-of-freedom robotic arm as an example, uses Snort to record the network communication data of the robot arm control system in real time, and filters the network traffic through self-defined rules, and then uses the BASE analysis platform to achieve security analysis of the network traffic. The solution verifies the effectiveness of online real-time detection of attacks and visualisation of attack records by designing simulated robotic arm and real robotic arm attack experiments respectively, thus achieving the security of network communication of the robot remote control system.展开更多
The soft continuum arm has extensive application in industrial production and human life due to its superior safety and flexibility. Reinforcement learning is a powerful technique for solving soft arm continuous contr...The soft continuum arm has extensive application in industrial production and human life due to its superior safety and flexibility. Reinforcement learning is a powerful technique for solving soft arm continuous control problems, which can learn an effective control policy with an unknown system model. However, it is often affected by the high sample complexity and requires huge amounts of data to train, which limits its effectiveness in soft arm control. An improved policy gradient method, policy gradient integrating long and short-term rewards denoted as PGLS, is proposed in this paper to overcome this issue. The shortterm rewards provide more dynamic-aware exploration directions for policy learning and improve the exploration efficiency of the algorithm. PGLS can be integrated into current policy gradient algorithms, such as deep deterministic policy gradient(DDPG). The overall control framework is realized and demonstrated in a dynamics simulation environment. Simulation results show that this approach can effectively control the soft arm to reach and track the targets. Compared with DDPG and other model-free reinforcement learning algorithms, the proposed PGLS algorithm has a great improvement in convergence speed and performance. In addition, a fluid-driven soft manipulator is designed and fabricated in this paper, which can verify the proposed PGLS algorithm in real experiments in the future.展开更多
The paper introduces an electroencephalography(EEG) driven online position control scheme for a robot arm by utilizing motor imagery to activate and error related potential(ErrP) to stop the movement of the individual...The paper introduces an electroencephalography(EEG) driven online position control scheme for a robot arm by utilizing motor imagery to activate and error related potential(ErrP) to stop the movement of the individual links, following a fixed(pre-defined) order of link selection. The right(left)hand motor imagery is used to turn a link clockwise(counterclockwise) and foot imagery is used to move a link forward. The occurrence of ErrP here indicates that the link under motion crosses the visually fixed target position, which usually is a plane/line/point depending on the desired transition of the link across 3D planes/around 2D lines/along 2D lines respectively. The imagined task about individual link's movement is decoded by a classifier into three possible class labels: clockwise, counterclockwise and no movement in case of rotational movements and forward, backward and no movement in case of translational movements. One additional classifier is required to detect the occurrence of the ErrP signal, elicited due to visually inspired positional link error with reference to a geometrically selected target position. Wavelet coefficients and adaptive autoregressive parameters are extracted as features for motor imagery and ErrP signals respectively. Support vector machine classifiers are used to decode motor imagination and ErrP with high classification accuracy above 80%. The average time taken by the proposed scheme to decode and execute control intentions for the complete movement of three links of a robot is approximately33 seconds. The steady-state error and peak overshoot of the proposed controller are experimentally obtained as 1.1% and4.6% respectively.展开更多
In some sense, talking about arms control and non-proliferation at the present in East Asia seems unsuitable. Moreover, for the "hawkish" forces in the United States, who are more prominent now than other el...In some sense, talking about arms control and non-proliferation at the present in East Asia seems unsuitable. Moreover, for the "hawkish" forces in the United States, who are more prominent now than other elements in influencing international politics in East Asia, as well as for those people within this broadly defined region.展开更多
International arms control and disarmament has recorded remarkable achieve-ments in recent years in the wake of rapproachment among major powers andoverall detente in the world at large. These remarkable achievements,...International arms control and disarmament has recorded remarkable achieve-ments in recent years in the wake of rapproachment among major powers andoverall detente in the world at large. These remarkable achievements, in theirturn, have propelled the global situation further in the direction favorable to furtherrelaxation of global tension. These mutually reinforcing and supplementary trends,展开更多
In order to solve the problem of trajectory tracking for a class of novel serial-parallel hybrid humanoid arm(HHA), which has parameters uncertainty, frictions, disturbance, abrasion and pulse forces derived from mo...In order to solve the problem of trajectory tracking for a class of novel serial-parallel hybrid humanoid arm(HHA), which has parameters uncertainty, frictions, disturbance, abrasion and pulse forces derived from motors, a multistep dynamics modeling strategy is proposed and a robust controller based on neural network(NN)-adaptive algorithm is designed. At the first step of dynamics modeling, the dynamics model of the reduced HHA is established by Lagrange method. At the second step of dynamics modeling, the parameter uncertain part resulting mainly from the idealization of the HHA is learned by adaptive algorithm. In the trajectory tracking controller, the radial basis function(RBF) NN, whose optimal weights are learned online by adaptive algorithm, is used to learn the upper limit function of the total uncertainties including frictions, disturbances, abrasion and pulse forces. To a great extent, the conservatism of this robust trajectory tracking controller is reduced, and by this controller the HHA can impersonate mostly human actions. The proof and simulation results testify the validity of the adaptive strategy for parameter learning and the neural network-adaptive strategy for the trajectory tracking control.展开更多
A new robust controller is proposed to regulate both flexural vibrations and rigid body motion of a hydraulically driven flexible arm. The controller combines backstepping control and sliding mode to arrive at a contr...A new robust controller is proposed to regulate both flexural vibrations and rigid body motion of a hydraulically driven flexible arm. The controller combines backstepping control and sliding mode to arrive at a controller capable of dealing with a nonlinear system with uncertainties. The sliding mode technique is used to achieve an asymptotic joint angle and vibration regulation in the presence of payload uncertainty by providing a virtual torque input at the joint while the backstepping technique is used to regulate the spool position of a hydraulic valve to provide the required torque. It is shown that there is no chatter in the hydraulic valve, which results in smoother operation of the system.展开更多
To address the problems of torque limit and controller saturation in the control of robot arm joint,an anti-windup control strategy is proposed for a humanoid robot arm,which is based on the integral state prediction ...To address the problems of torque limit and controller saturation in the control of robot arm joint,an anti-windup control strategy is proposed for a humanoid robot arm,which is based on the integral state prediction under the direct torque control system of brushless DC motor. First,the arm joint of the humanoid robot is modelled. Then the speed controller model and the influence of the initial value of the integral element on the system are analyzed. On the basis of the traditional antiwindup controller,an integral state estimator is set up. Under the condition of different load torques and the given speed,the integral steady-state value is estimated. Therefore the accumulation of the speed error terminates when the integrator reaches saturation. Then the predicted integral steady-state value is used as the initial value of the regulator to enter the linear region to make the system achieve the purpose of anti-windup. The simulation results demonstrate that the control strategy for the humanoid robot arm joint based on integral state prediction can play the role of anti-windup and suppress the overshoot of the system effectively. The system has a good dynamic performance.展开更多
Human arm movements may be adversely affected in the event of stroke or spinal cord injuries, eventually causing the patient to lose control of arm movements. Electromyography (EMG) is con-sidered the most effective t...Human arm movements may be adversely affected in the event of stroke or spinal cord injuries, eventually causing the patient to lose control of arm movements. Electromyography (EMG) is con-sidered the most effective technique for the restoration of arm movement in such cases. The reha-bilitation period for such patients is usually long. Moreover, complex treatment techniques may demoralize them. Therefore, this study, attempts to contribute to the development of a relaxing rehabilitation environment through electromyography control of a computer model of the arm. The model is created using MATLAB? and Data LINK software and other requisite components for training the targeted participants to control their arm movements. Six male participants with no history of injury to the arms or back were selected using the set protocol. The results and data collected are analysed using three performance measures i.e. the number of target hits, average time to target, and path efficiency for each target. Then, the main results in terms of the obtained performance measures are discussed and compared with those of previous studies.展开更多
文摘In response to the frequent safety accidents of industrial robots, this paper designs and implements a safety detection system for robot control. It can perform real-time security detection of robot operations on industrial production lines to improve the security and reliability of robot control systems. This paper designs and implements a robot control system based Snort-BASE for real-time online detection of DoS attacks. The system uses a six-degree-of-freedom robotic arm as an example, uses Snort to record the network communication data of the robot arm control system in real time, and filters the network traffic through self-defined rules, and then uses the BASE analysis platform to achieve security analysis of the network traffic. The solution verifies the effectiveness of online real-time detection of attacks and visualisation of attack records by designing simulated robotic arm and real robotic arm attack experiments respectively, thus achieving the security of network communication of the robot remote control system.
基金partially supported by the National Key Research and Development Project Monitoring and Prevention of Major Natural Disasters Special Program (Grant No. 2020YFC1512202)the Anhui University Cooperative Innovation Project (Grant No. GXXT-2019-003)
文摘The soft continuum arm has extensive application in industrial production and human life due to its superior safety and flexibility. Reinforcement learning is a powerful technique for solving soft arm continuous control problems, which can learn an effective control policy with an unknown system model. However, it is often affected by the high sample complexity and requires huge amounts of data to train, which limits its effectiveness in soft arm control. An improved policy gradient method, policy gradient integrating long and short-term rewards denoted as PGLS, is proposed in this paper to overcome this issue. The shortterm rewards provide more dynamic-aware exploration directions for policy learning and improve the exploration efficiency of the algorithm. PGLS can be integrated into current policy gradient algorithms, such as deep deterministic policy gradient(DDPG). The overall control framework is realized and demonstrated in a dynamics simulation environment. Simulation results show that this approach can effectively control the soft arm to reach and track the targets. Compared with DDPG and other model-free reinforcement learning algorithms, the proposed PGLS algorithm has a great improvement in convergence speed and performance. In addition, a fluid-driven soft manipulator is designed and fabricated in this paper, which can verify the proposed PGLS algorithm in real experiments in the future.
基金supported by UGC Sponsored UPE-ⅡProject in Cognitive Science of Jadavpur University,Kolkata
文摘The paper introduces an electroencephalography(EEG) driven online position control scheme for a robot arm by utilizing motor imagery to activate and error related potential(ErrP) to stop the movement of the individual links, following a fixed(pre-defined) order of link selection. The right(left)hand motor imagery is used to turn a link clockwise(counterclockwise) and foot imagery is used to move a link forward. The occurrence of ErrP here indicates that the link under motion crosses the visually fixed target position, which usually is a plane/line/point depending on the desired transition of the link across 3D planes/around 2D lines/along 2D lines respectively. The imagined task about individual link's movement is decoded by a classifier into three possible class labels: clockwise, counterclockwise and no movement in case of rotational movements and forward, backward and no movement in case of translational movements. One additional classifier is required to detect the occurrence of the ErrP signal, elicited due to visually inspired positional link error with reference to a geometrically selected target position. Wavelet coefficients and adaptive autoregressive parameters are extracted as features for motor imagery and ErrP signals respectively. Support vector machine classifiers are used to decode motor imagination and ErrP with high classification accuracy above 80%. The average time taken by the proposed scheme to decode and execute control intentions for the complete movement of three links of a robot is approximately33 seconds. The steady-state error and peak overshoot of the proposed controller are experimentally obtained as 1.1% and4.6% respectively.
文摘In some sense, talking about arms control and non-proliferation at the present in East Asia seems unsuitable. Moreover, for the "hawkish" forces in the United States, who are more prominent now than other elements in influencing international politics in East Asia, as well as for those people within this broadly defined region.
文摘International arms control and disarmament has recorded remarkable achieve-ments in recent years in the wake of rapproachment among major powers andoverall detente in the world at large. These remarkable achievements, in theirturn, have propelled the global situation further in the direction favorable to furtherrelaxation of global tension. These mutually reinforcing and supplementary trends,
基金supported by National Basic Research and Development Program of China (973 Program, Grant No. 2006CB705402)
文摘In order to solve the problem of trajectory tracking for a class of novel serial-parallel hybrid humanoid arm(HHA), which has parameters uncertainty, frictions, disturbance, abrasion and pulse forces derived from motors, a multistep dynamics modeling strategy is proposed and a robust controller based on neural network(NN)-adaptive algorithm is designed. At the first step of dynamics modeling, the dynamics model of the reduced HHA is established by Lagrange method. At the second step of dynamics modeling, the parameter uncertain part resulting mainly from the idealization of the HHA is learned by adaptive algorithm. In the trajectory tracking controller, the radial basis function(RBF) NN, whose optimal weights are learned online by adaptive algorithm, is used to learn the upper limit function of the total uncertainties including frictions, disturbances, abrasion and pulse forces. To a great extent, the conservatism of this robust trajectory tracking controller is reduced, and by this controller the HHA can impersonate mostly human actions. The proof and simulation results testify the validity of the adaptive strategy for parameter learning and the neural network-adaptive strategy for the trajectory tracking control.
文摘A new robust controller is proposed to regulate both flexural vibrations and rigid body motion of a hydraulically driven flexible arm. The controller combines backstepping control and sliding mode to arrive at a controller capable of dealing with a nonlinear system with uncertainties. The sliding mode technique is used to achieve an asymptotic joint angle and vibration regulation in the presence of payload uncertainty by providing a virtual torque input at the joint while the backstepping technique is used to regulate the spool position of a hydraulic valve to provide the required torque. It is shown that there is no chatter in the hydraulic valve, which results in smoother operation of the system.
基金Supported by the National Natural Science Foundation of China(61175090,61703249)Shandong Provincial Natural Science Foundation,China(ZR2017MF045)
文摘To address the problems of torque limit and controller saturation in the control of robot arm joint,an anti-windup control strategy is proposed for a humanoid robot arm,which is based on the integral state prediction under the direct torque control system of brushless DC motor. First,the arm joint of the humanoid robot is modelled. Then the speed controller model and the influence of the initial value of the integral element on the system are analyzed. On the basis of the traditional antiwindup controller,an integral state estimator is set up. Under the condition of different load torques and the given speed,the integral steady-state value is estimated. Therefore the accumulation of the speed error terminates when the integrator reaches saturation. Then the predicted integral steady-state value is used as the initial value of the regulator to enter the linear region to make the system achieve the purpose of anti-windup. The simulation results demonstrate that the control strategy for the humanoid robot arm joint based on integral state prediction can play the role of anti-windup and suppress the overshoot of the system effectively. The system has a good dynamic performance.
文摘Human arm movements may be adversely affected in the event of stroke or spinal cord injuries, eventually causing the patient to lose control of arm movements. Electromyography (EMG) is con-sidered the most effective technique for the restoration of arm movement in such cases. The reha-bilitation period for such patients is usually long. Moreover, complex treatment techniques may demoralize them. Therefore, this study, attempts to contribute to the development of a relaxing rehabilitation environment through electromyography control of a computer model of the arm. The model is created using MATLAB? and Data LINK software and other requisite components for training the targeted participants to control their arm movements. Six male participants with no history of injury to the arms or back were selected using the set protocol. The results and data collected are analysed using three performance measures i.e. the number of target hits, average time to target, and path efficiency for each target. Then, the main results in terms of the obtained performance measures are discussed and compared with those of previous studies.