A five leg inverter (FLI) control is incorporated to drive two independent rated permanent magnet synchronous motors (PMSMs) for automotive applications. Literature evidences many attempts of employing the FLI for con...A five leg inverter (FLI) control is incorporated to drive two independent rated permanent magnet synchronous motors (PMSMs) for automotive applications. Literature evidences many attempts of employing the FLI for controlling two general purpose/special motors, where variety of modulation techniques has been practiced for performance enhancement. Also in these cases one leg of inverter is common to both the motors. The expanded two arm modulation (ETAM) has been generally engaged in FLI. In ETAM the percentage voltage utilization factor (VUF) is calculated based on “α<sub>max</sub>”, where “α<sub>max</sub>” is the maximum modulation index and equal to and hence it restricts the VUF to 50%. This makes the FLI drives to use the dc link in inefficient way, which is due to the fact that conventional ETAM works with voltage reference. This paper modifies the ETAM in an ingenious way to improve the VUF further through current reference. In addition, the developed current reference expanded two arm modulation (CRETAM) minimizes the current harmonics and torque ripple as well. A detailed comparison of the CRETAM with the conventional ETAM and the competent digital counterpart, space vector pulse width modulation (SVPWM), is also presented. The enhancement in VUF, torque ripple minimization and current total harmonic distortion (THD) reduction are found in the MATLAB based simulation results.展开更多
The full-bridge converters usually use transformer leakage inductance and parallel resonant capacitors to achieve smooth current commutation and soft switching functions,which can easily cause problems such as energy ...The full-bridge converters usually use transformer leakage inductance and parallel resonant capacitors to achieve smooth current commutation and soft switching functions,which can easily cause problems such as energy leakage and significant duty cycle loss.This paper designs a novel full-bridge zero-current(FB-ZCS)converter with series resonant capacitors and proposes a frequency and phase-shift synthesis modulation(FPSSM)control strategy based on this topology.Compared with the traditional parallel resonant capacitor circuit,the passive components used are significantly reduced,the structure is simple,and there is only a slight energy loss.By controlling the charging time of the capacitor,it can be achieved without additional switches or auxiliary circuits.The automatic control of capacitor energy based on input current addresses the low efficiency of the traditional control strategies.This paper introduces its principle in detail and verifies it through simulation.Finally,an experimental prototype was built further to demonstrate the feasibility of the theory through experiments.The module can be applied to a photovoltaic DC collection system using input parallel output series(IPOS)cascade to provide a new topology for large-scale,long-distance DC transmission.展开更多
In the medium voltage direct current(MVDC)transmission system,a small number of MMC sub modules will reduce the power quality.In this paper,based on the research background of Photovoltaic Medium VoltageDirect Current...In the medium voltage direct current(MVDC)transmission system,a small number of MMC sub modules will reduce the power quality.In this paper,based on the research background of Photovoltaic Medium VoltageDirect Current(PV-MVDC)system,aHybrid Modulation Strategy based on theDecoupledDouble SynchronousReference Frame(DDSRF)control strategy is proposed.The dual armcomplementary hybrid modulation combining nearest-level-SPWM(NL-SPWM)can keep the number of SMs in the ON state constant.Then,the corresponding voltage sharing control algorithm of sub module(SM)is introduced.Through theoretical calculation,the modulation strategy can be found to stabilize the DC voltage and reduce the harmonic content.A32-level MMC systemhas been developed to verity that the proposed hybrid modulation strategy and its SM voltage sharing algorithm have the advantages of restraining circulating current and maintaining capacitor voltage balance.展开更多
以32 bit ARM STM32F103为控制核心,设计并实现了一个帆板自动控制系统。在设定的模式和间距(风扇与帆板之间的距离)下,对帆板转角的控制进行了实验分析与讨论。实验中采用PWM技术和PID控制器来调节风扇风力的大小,从而实现对帆板转角...以32 bit ARM STM32F103为控制核心,设计并实现了一个帆板自动控制系统。在设定的模式和间距(风扇与帆板之间的距离)下,对帆板转角的控制进行了实验分析与讨论。实验中采用PWM技术和PID控制器来调节风扇风力的大小,从而实现对帆板转角的控制。整个系统软硬件设计合理、操作简单、方便,控制精度较高。实验结果进一步验证了设计方案的正确性,证实了所设计的系统具有一定的理论研究意义和实用性。展开更多
文摘A five leg inverter (FLI) control is incorporated to drive two independent rated permanent magnet synchronous motors (PMSMs) for automotive applications. Literature evidences many attempts of employing the FLI for controlling two general purpose/special motors, where variety of modulation techniques has been practiced for performance enhancement. Also in these cases one leg of inverter is common to both the motors. The expanded two arm modulation (ETAM) has been generally engaged in FLI. In ETAM the percentage voltage utilization factor (VUF) is calculated based on “α<sub>max</sub>”, where “α<sub>max</sub>” is the maximum modulation index and equal to and hence it restricts the VUF to 50%. This makes the FLI drives to use the dc link in inefficient way, which is due to the fact that conventional ETAM works with voltage reference. This paper modifies the ETAM in an ingenious way to improve the VUF further through current reference. In addition, the developed current reference expanded two arm modulation (CRETAM) minimizes the current harmonics and torque ripple as well. A detailed comparison of the CRETAM with the conventional ETAM and the competent digital counterpart, space vector pulse width modulation (SVPWM), is also presented. The enhancement in VUF, torque ripple minimization and current total harmonic distortion (THD) reduction are found in the MATLAB based simulation results.
基金This work was supported by the Key R&D Program of Tianjin(No.20YFYSGX00060).
文摘The full-bridge converters usually use transformer leakage inductance and parallel resonant capacitors to achieve smooth current commutation and soft switching functions,which can easily cause problems such as energy leakage and significant duty cycle loss.This paper designs a novel full-bridge zero-current(FB-ZCS)converter with series resonant capacitors and proposes a frequency and phase-shift synthesis modulation(FPSSM)control strategy based on this topology.Compared with the traditional parallel resonant capacitor circuit,the passive components used are significantly reduced,the structure is simple,and there is only a slight energy loss.By controlling the charging time of the capacitor,it can be achieved without additional switches or auxiliary circuits.The automatic control of capacitor energy based on input current addresses the low efficiency of the traditional control strategies.This paper introduces its principle in detail and verifies it through simulation.Finally,an experimental prototype was built further to demonstrate the feasibility of the theory through experiments.The module can be applied to a photovoltaic DC collection system using input parallel output series(IPOS)cascade to provide a new topology for large-scale,long-distance DC transmission.
基金This work was supported by the National Key Research and Development Project of China(2018YFB0905803).
文摘In the medium voltage direct current(MVDC)transmission system,a small number of MMC sub modules will reduce the power quality.In this paper,based on the research background of Photovoltaic Medium VoltageDirect Current(PV-MVDC)system,aHybrid Modulation Strategy based on theDecoupledDouble SynchronousReference Frame(DDSRF)control strategy is proposed.The dual armcomplementary hybrid modulation combining nearest-level-SPWM(NL-SPWM)can keep the number of SMs in the ON state constant.Then,the corresponding voltage sharing control algorithm of sub module(SM)is introduced.Through theoretical calculation,the modulation strategy can be found to stabilize the DC voltage and reduce the harmonic content.A32-level MMC systemhas been developed to verity that the proposed hybrid modulation strategy and its SM voltage sharing algorithm have the advantages of restraining circulating current and maintaining capacitor voltage balance.
文摘以32 bit ARM STM32F103为控制核心,设计并实现了一个帆板自动控制系统。在设定的模式和间距(风扇与帆板之间的距离)下,对帆板转角的控制进行了实验分析与讨论。实验中采用PWM技术和PID控制器来调节风扇风力的大小,从而实现对帆板转角的控制。整个系统软硬件设计合理、操作简单、方便,控制精度较高。实验结果进一步验证了设计方案的正确性,证实了所设计的系统具有一定的理论研究意义和实用性。