The design of solid armature of railgun should take full account of its operating conditions and material properties because the armature is subjected to dynamic loading conditions and experiences a complicated electr...The design of solid armature of railgun should take full account of its operating conditions and material properties because the armature is subjected to dynamic loading conditions and experiences a complicated electrical,thermal and mechanical process in the interior ballistic cycle.In this paper present,we first introduced a multi-physical field model of railgun,followed by several examples to investigate the launching process.Especially,we used the explicit finite element method,in which material nonlinearity and geometric nonlinearity were accounted,to investigate the deform behaviors of solid armature.The results show that the dynamic mechanical process of armature is dependent on the armature geometry,material and exciting electric current.By the numerical simulation,the understanding of the fracture mechanism of solid armature was deepened.展开更多
In order to analysis the distribution characteristics of in-bore magnetic field for C-shaped armature electromagnetic railgun, a computational model considering dynamic contact pressure is established. By solving the ...In order to analysis the distribution characteristics of in-bore magnetic field for C-shaped armature electromagnetic railgun, a computational model considering dynamic contact pressure is established. By solving the dynamic equation, the in-bore motion characteristics of the armature are obtained. The distribution of current in the rail and armature is analyzed based on the magnetic diffusion equation and Ampere’s law. On this basis, three simulation models are proposed, which correspond to static state,motion state and motion state considering the velocity skin effect. The magnetic field of the investigated points along the central axes of the armature front end are obtained. The results show that, in static state,the peak magnetic flux density of each investigated point is greater than the other two states. Velocity skin effect leads to a decrease in peak magnetic flux density. The change of motion state has little influence on the peak magnetic flux density of the investigated point that far away from the armature. The calculated results can be used in the electromagnetic shielding design of intelligent ammunition.展开更多
The armature is an important part affecting the energy conversion efficiency of a reluctance accelerator.In this paper,six kinds of soft magnetic materials are chosen and four structures are designed for the armature....The armature is an important part affecting the energy conversion efficiency of a reluctance accelerator.In this paper,six kinds of soft magnetic materials are chosen and four structures are designed for the armature.At first,the circuit and magnetic force are theoretically analyzed.Then the armatures with different materials and structures are used in the simulation,and the performances are compared and analyzed.At last,the experiment verifies the theory analysis and simulation design.It is concluded that the saturation flux density and conductivity of the material are the key factors affecting the armature force,and the optimization of armature structure can effectively restrain the eddy current,reduce negative force and improve efficiency.Compared with cutting slits in solid armatures,laminating the sheets radially can reduce the eddy current more efficiently.Although slitting can prevent the eddy current to a certain extent,meanwhile,it will decrease the magnetic force because of the losing of magnetized volume and the surface area.Hence,choosing the high saturation flux density material and making out the armature with radially_laminated sheets will improve the efficiency of the reluctance accelerator.In this paper,the silicon steel radially_laminated armature is a better choice for the armature design of the reluctance accelerator.展开更多
The authors have invented the superior wind power unit, which is composed of the tandem wind rotors and the double rotational armature type generator without the traditional stator. The large-sized front wind rotor an...The authors have invented the superior wind power unit, which is composed of the tandem wind rotors and the double rotational armature type generator without the traditional stator. The large-sized front wind rotor and the small-sized rear wind rotor drive, as for the upwind type, the inner and the outer rotational armatures, respectively, in keeping the rotational torque counter-balanced between both wind rotors/armatures. The unique rotational behaviors of the tandem wind rotors and the fundamental performances of the unit have been discussed at the previous paper. Continuously, this paper investigates experimentally and numerically the flow condition around the wind rotors to know the flow interactions between the front and the rear wind rotors, and optimizes the blade profile in the front wind rotor. The front blade should work fruitfully at the larger radius and had better not work at the smaller radius for giving plenty of wind energy to the rear wind rotor, taking account of the flow interaction between both wind rotors.展开更多
We present a novel armature structure for 3D articulated shapes, called SBall short for skeletal balls, which includes two parts: a one-dimensional skeleton and incident balls. Our algorithm mainly focuses on constru...We present a novel armature structure for 3D articulated shapes, called SBall short for skeletal balls, which includes two parts: a one-dimensional skeleton and incident balls. Our algorithm mainly focuses on constructing the armature structure. This structure is based on an approximation skeleton which is homotopy equivalent to the shape. Each ball in the structure connects a skeletal joint and an interior region of the shape. The boundary vertices on the shape surface are attached onto the SBall using the power diagram of the ball set. A bilateral O^tering algorithm and a variational segmentation algorithm are proposed to enhance the quality of SBall. Finally, applications of this structure are discussed.展开更多
Published research is minimal on vibration characteristics of hermetically sealed electromagnetic relay (EMR) ex- posed to mechanical environment. The vibration characteristics of armature system, link contact system ...Published research is minimal on vibration characteristics of hermetically sealed electromagnetic relay (EMR) ex- posed to mechanical environment. The vibration characteristics of armature system, link contact system with electromagnetic system will cause EMR malfunction. The nonlinear dynamics model of armature systems was studied by considering electro- magnetic attraction force and opposite mechanical force in this paper. Angular displacements of armature under different sinu- soidal vibration conditions are solved in order to obtain the failure mode result from armature system. Vibration tests showed the presented analyzing method is suitable for EMR. The conclusions are instructive for increasing vibration resistance of armature systems of EMR, and are significant for reliability design of switch apparatus.展开更多
A measurement system has been developed based on high-precision printed probes in printed circuit board (PCB) and steep rising-time probe adapters, which can be applied to study the expansion uniformity of armature ...A measurement system has been developed based on high-precision printed probes in printed circuit board (PCB) and steep rising-time probe adapters, which can be applied to study the expansion uniformity of armature in a helical magnetic flux compression generator (HFCG). The influences of wall thickness and initiation position on the expansion uniformity of armature in HFCG were experimentally investigated. The results show that the armature with thinner wall thickness will easily rupture due to the high pressure of detonation products inside, the armature with larger wall thickness will easily crack due to the tensile stress on the outer surface of the wall, the influence of the end effect on the expansion uniformity can be ignored if the distance between the first group of probe and the initiation point is more than 3 times the armature diameter.展开更多
The paper develops accurate analytical subdomain models for predicting the magnetic and armature reaction fields in fault-tolerant flux-switching permanent-magnet machines.The entire region is divided into five subdom...The paper develops accurate analytical subdomain models for predicting the magnetic and armature reaction fields in fault-tolerant flux-switching permanent-magnet machines.The entire region is divided into five subdomains,followed by rotor slots,air-gap,stator slots,PM,and external air-gap imported to account for flux leakage.The coil turns and the remanence of magnets are adjusted by keeping the magnetic and electrical loading on the motor constant.The distance between the centers of two adjacent stator slots varies due to the introduction of faulttolerant teeth.According to the variable separation method,the general solution expression of each region can be determined by solving the partial differential systems of equations.The magnetic field distributions of subdomains are obtained by applying the continuity conditions between adjacent regions.Some analytical field expressions are represented as new forms under armature reaction field condition compared to those under no-load condition.Based on the developed analytical models,the flux density distribution and the electromagnetic performance can be calculated under no-load or armature reaction field condition separately.The finite element analysis is carried out to verify the validity of the proposed analytical model.展开更多
The feedback spring rod of the armature assembly is cancelled in the double redundance double nozzle flapper valve(DRDNFV),and the difficulty of valve core displacement control is increased.Therefore,this paper intend...The feedback spring rod of the armature assembly is cancelled in the double redundance double nozzle flapper valve(DRDNFV),and the difficulty of valve core displacement control is increased.Therefore,this paper intends to study the static characteristic of DRDNFV through the AMESet and AMESim simulation.It is explored under the circumstance of the fixed orifices being clogged and experimentally verified on the test bench.The results show that the pressure gain increases and the flow gain decreases with the increasing clogged degree of the fixed orifices on both sides.The zero bias increases synchronously with the increasing clogged degree of the unilateral fixed orifice.The experimental results are basically consistent with the theoretical curves and the theoretical correctness of the simulation model is effectively verified.The results can provide the theoretical reference for design,debugging,maintenance and fault diagnosis of DRDNFV.展开更多
The increase in the capacity and the improvement in the structure of large generatorsrequire better performance of their protection systems against armature faults. Therefore, itis desirous to further the study on the...The increase in the capacity and the improvement in the structure of large generatorsrequire better performance of their protection systems against armature faults. Therefore, itis desirous to further the study on the operation of synchronous machines with internal faultsin stator windings. For this purpose, the armature asymmetry of synchronous generatorsconnected to the power system and operating on load condition is analysed for the first timeby using the multi-loop method. In consideration of the power source a mathematical modelfor asymmetrical generators is established and its solution is proposed. Compared withexperimental results at rated voltage, the new approach is justified.展开更多
The dynamic performance of a nozzle-flapper servo valve can be affected by several factors such as the disturbance of the input signal,the motion of the armature assembly and the oscillation of the jet force.As the pa...The dynamic performance of a nozzle-flapper servo valve can be affected by several factors such as the disturbance of the input signal,the motion of the armature assembly and the oscillation of the jet force.As the part of vibrating at high frequency,the armature assembly plays a vital role during the operation of the servo valve.In order to accurately predict the transient response of the armature assembly during the vibration,a mathematical model of armature assembly is established based on the distributed parameters method(DPM)and Hamilton principle.The new mathematical model is composed of three main parts,the modal eigenfunction,modal mechanical response expressions of the spring tube and the motion equation of the other armature assembly.After programing,the purpose of using the DPM to predict the dynamic response of different positions located on the armature assembly is achieved.For verifying the validity of the mathematical model,the finite element method(FEM)and classic model(CM)of armature assembly are applicated by commercial software under the same condition.The comparison results prove that the DPM can effectively predict the axial and tangential deflection of the armature assembly different positions which the CM can’t duing to its over-simplification.A certain error is generated when predicting the axial deformation at different heights by DPM,which is caused by an approximate method to simulate the torsion of the spring tube.The comparison results of the spring tube deflection at different vibration frequencies shows that the adaptability of DPM is significantly higher than the classic model,which verify the model is more adaptable for predicting the dynamic response of the armature assembly.展开更多
Based on the configuration of deep slot concen-trated coils,an analytical model is developed for predicting the armature reaction field produced by the 3-phase stator windings of permanent magnet brushless DC motors w...Based on the configuration of deep slot concen-trated coils,an analytical model is developed for predicting the armature reaction field produced by the 3-phase stator windings of permanent magnet brushless DC motors with concentrated coils by using the image method and the ana-lytical functions of the armature reaction and winding in-ductances are proposed accounting for the influence of sta-tor slotting.This approach is different from the method of equivalent distributed current sheet and more suitable for electric machines,which have concentrated coils and deeper slots.Under different control mode,the different analytical functions are presented.This will be helpful when further analyzing the performance of the motor.The results agree with the experiment very well.展开更多
For characterizing a series augmented railgun launching process,the simulation and experiment were done.In the experiment,only observation of muzzle voltage,current and armature position were insufficient to analyze l...For characterizing a series augmented railgun launching process,the simulation and experiment were done.In the experiment,only observation of muzzle voltage,current and armature position were insufficient to analyze launching process deeply since armature velocity,resistance force and voltage drop of armature were also important to the launching process.In the present work,based on MATLAB/SIMULINK software platform,the simulation model was built,and the dynamic characteristics of system were simulated.Furthermore,the variations of armature velocity,total resistance force and voltage drop of armature against time were investigated based on the data of B-dot probes(to measure position of armature),Rogowsky coil(to monitor current) and high voltage probes(to observe muzzle voltage).The results indicated that,the voltage drop of armature and the total resistance force showed roughly regulartendency.There were obvious stages observed in the two-turn series augmented railgun launching process.展开更多
Short circuit due to the brushes over the commutator segments of DC machines causes reduction in the armature resistance and flux linkage, which is especially meaningful when the electric machine is running at zero or...Short circuit due to the brushes over the commutator segments of DC machines causes reduction in the armature resistance and flux linkage, which is especially meaningful when the electric machine is running at zero or extremely low speed. In design computation of DC machines, usually the average values of the coefficients are used in consideration of the effects of the short circuit. How-ever, the average values have complicated relationships with the parameters of electric machines, therefore, no usable mathematical model has been established yet for precise computation. In this paper, a relatively simple and generalized method for precise computation of the average values of the short-circuit coefficients is proposed. This method decouples some of the machine parameters and, therefore establishes a highly parameterized mathematical model and is convenient in formulation for computation. In addition, the computation data for one and two brush pairs, which are the most common cases, is provided.展开更多
The authors have invented a unique counter-rotating type tidal stream power unit, which is composed of tandem propellers and a double rotational armature type generator without a stator. The front and the rear propell...The authors have invented a unique counter-rotating type tidal stream power unit, which is composed of tandem propellers and a double rotational armature type generator without a stator. The front and the rear propellers drive, as for an upstream type, the inner and the outer rotational armatures in the counter-rotating directions respectively, which keep the rotational torques counter-balanced between both propellers and armatures. This paper investigates experimentally the output and forces acting on a pile in a water channel, to get design materials of the mono-pile type tidal stream power unit. The output is maximal at the moderate rotational speed, as the same as a wind turbine. The force acting on the pile is affected by the drag, the Karman vortex and the dynamic balances of the tandem propellers, and has dominant frequencies due to not only the individual but also the interacting rotation of the front and the rear propellers.展开更多
The counter-rotating type hydroelectric unit, which is composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures, has been proposed. In the unit, the front and the rear...The counter-rotating type hydroelectric unit, which is composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures, has been proposed. In the unit, the front and the rear runners counter-drive the inner and the outer armatures of the generator, respectively. Besides, the flow direction at the rear runner outlet must coincide with the direction at the front runner inlet, because the angular momentum change through the rear runner must coincides with that through the front runner. In this paper, the tandem runners work at on-cam conditions in keeping the induced frequency constant, to provide the hydroelectric unit for the power grid system. The output and the hydraulic efficiency are affected by the adjusting angles of the front and the rear blades. Both optimum angles giving the maximum output or efficiency were presented at the various discharge/head circumstances, accompanying with the turbine performances.展开更多
The counter-rotating type tidal range power unit composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures is proposed to utilize effectively the tidal range. In the un...The counter-rotating type tidal range power unit composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures is proposed to utilize effectively the tidal range. In the unit, the front and the rear runners counter-drive the inner and the outer armatures of the generator, respectively. Besides, the flow runs in the axial direction at the rear runner outlet while the flow has not the swirling component at the front runner inlet, because the angular momentum change through the rear runner must coincides with that through the front runner. Such operations are suitable for bidirectional flows, namely working at the seashore with the rising and the falling tidal ranges, and the unit may be able to take place of the traditional bulb type turbines. To promote more the tidal power generation by this type unit, the runners were modified so as to be suitable for both rising and falling flows. The hydraulic performances are acceptable and take the optimum efficiency at the on-cam operation, while the trailing profiles of the runner blades determine mainly the theoretical output.展开更多
To improve the vehicle dynamic performance and ultra-capacitor operating circumstance,this paper studied the multi-current-two-quadrant converter applied to drive high power DC motor in ultra-capacitor electric bus(UC...To improve the vehicle dynamic performance and ultra-capacitor operating circumstance,this paper studied the multi-current-two-quadrant converter applied to drive high power DC motor in ultra-capacitor electric bus(UCEB).Compared with normal current-two-quadrant converter,the multi-current-two-quadrant converter can reduce the motor armature current ripple and the ultra-capacitor current ripple.Moreover,it improves power capabilities,reliability and fault tolerant capability of driving system.After analyzing the structure and working principle of the multi-current-two-quadrant converter,the expressions of armature current ripple and the quantitative relationships between the ultra-capacitor power loss and duty cycle were derived.The simulation and experimental results showed that the multi-current-two-quadrant converter has great advantages in reducing the armature current ripple and ultra-capacitor power loss,which can improve the vehicle performance and overall efficiency.展开更多
When a direct-current (DC) machine runs at extremely low speed or standstill, the reduction in the armature resistance and the armature flux linkage due to the short circuited coils by the brushes on the commutator ...When a direct-current (DC) machine runs at extremely low speed or standstill, the reduction in the armature resistance and the armature flux linkage due to the short circuited coils by the brushes on the commutator should not be neglected. Taking this reduction effect into account, the average values of the reduction coefficients relate to the machine parameters in complicated forms. In this paper, an effective algorithm for the precise computation of the average values of these reduction coefficients is proposed. Furthermore, in the algorithm, the effect of the insulation thickness between the commutator segments and the multiplicity of the wave winding are considered for the first time. The proposed algorithm can also be accommodated into the computer-aided design (CAD) of a DC machine, which normally runs at extremely low speed or standstill.展开更多
Demagnetization behavior of Halbach magnetized compensated pulsed alternator(CPA)is studied by using finite element method(FEM)under the different demagnetization factors in this paper.The effect of armature reaction ...Demagnetization behavior of Halbach magnetized compensated pulsed alternator(CPA)is studied by using finite element method(FEM)under the different demagnetization factors in this paper.The effect of armature reaction magnetic field and thermal rise on demagnetization of PMs is analyzed.This paper investigates the effect of different demagnetization factors on magnetic field distribution,load current,and no-load phase voltage.A series of dynamic demagnetization points in Halbach array permanent magnet(PM)are evaluated to search the worst working point.Partial demagnetization risk can be represented by the worst working point,and the global demagnetization of the PM is represented by the no-load phase voltage characteristics after discharge.The research results demonstrated that the compensation shield with a certain thickness can increase the discharge current and weaken the demagnetization influence of armature reaction.The demagnetization effect of armature reaction on PMs at high temperatures will be strengthened.展开更多
文摘The design of solid armature of railgun should take full account of its operating conditions and material properties because the armature is subjected to dynamic loading conditions and experiences a complicated electrical,thermal and mechanical process in the interior ballistic cycle.In this paper present,we first introduced a multi-physical field model of railgun,followed by several examples to investigate the launching process.Especially,we used the explicit finite element method,in which material nonlinearity and geometric nonlinearity were accounted,to investigate the deform behaviors of solid armature.The results show that the dynamic mechanical process of armature is dependent on the armature geometry,material and exciting electric current.By the numerical simulation,the understanding of the fracture mechanism of solid armature was deepened.
基金supported by the Key Basic Research Projects of Basic Strengthening Plan under Grants 2017-JCJQ-ZD-004
文摘In order to analysis the distribution characteristics of in-bore magnetic field for C-shaped armature electromagnetic railgun, a computational model considering dynamic contact pressure is established. By solving the dynamic equation, the in-bore motion characteristics of the armature are obtained. The distribution of current in the rail and armature is analyzed based on the magnetic diffusion equation and Ampere’s law. On this basis, three simulation models are proposed, which correspond to static state,motion state and motion state considering the velocity skin effect. The magnetic field of the investigated points along the central axes of the armature front end are obtained. The results show that, in static state,the peak magnetic flux density of each investigated point is greater than the other two states. Velocity skin effect leads to a decrease in peak magnetic flux density. The change of motion state has little influence on the peak magnetic flux density of the investigated point that far away from the armature. The calculated results can be used in the electromagnetic shielding design of intelligent ammunition.
基金supported in part by the Fundamental Research Funds for the Central Universities,China[grant number 2682020GF03]in part by the Foundation of Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle,Ministry of Education,China.
文摘The armature is an important part affecting the energy conversion efficiency of a reluctance accelerator.In this paper,six kinds of soft magnetic materials are chosen and four structures are designed for the armature.At first,the circuit and magnetic force are theoretically analyzed.Then the armatures with different materials and structures are used in the simulation,and the performances are compared and analyzed.At last,the experiment verifies the theory analysis and simulation design.It is concluded that the saturation flux density and conductivity of the material are the key factors affecting the armature force,and the optimization of armature structure can effectively restrain the eddy current,reduce negative force and improve efficiency.Compared with cutting slits in solid armatures,laminating the sheets radially can reduce the eddy current more efficiently.Although slitting can prevent the eddy current to a certain extent,meanwhile,it will decrease the magnetic force because of the losing of magnetized volume and the surface area.Hence,choosing the high saturation flux density material and making out the armature with radially_laminated sheets will improve the efficiency of the reluctance accelerator.In this paper,the silicon steel radially_laminated armature is a better choice for the armature design of the reluctance accelerator.
文摘The authors have invented the superior wind power unit, which is composed of the tandem wind rotors and the double rotational armature type generator without the traditional stator. The large-sized front wind rotor and the small-sized rear wind rotor drive, as for the upwind type, the inner and the outer rotational armatures, respectively, in keeping the rotational torque counter-balanced between both wind rotors/armatures. The unique rotational behaviors of the tandem wind rotors and the fundamental performances of the unit have been discussed at the previous paper. Continuously, this paper investigates experimentally and numerically the flow condition around the wind rotors to know the flow interactions between the front and the rear wind rotors, and optimizes the blade profile in the front wind rotor. The front blade should work fruitfully at the larger radius and had better not work at the smaller radius for giving plenty of wind energy to the rear wind rotor, taking account of the flow interaction between both wind rotors.
基金Supported by the National Natural Science Foundation of China(61202278 and 61222206)the Zhejiang Natural Science Foundation of China(Y1111101)
文摘We present a novel armature structure for 3D articulated shapes, called SBall short for skeletal balls, which includes two parts: a one-dimensional skeleton and incident balls. Our algorithm mainly focuses on constructing the armature structure. This structure is based on an approximation skeleton which is homotopy equivalent to the shape. Each ball in the structure connects a skeletal joint and an interior region of the shape. The boundary vertices on the shape surface are attached onto the SBall using the power diagram of the ball set. A bilateral O^tering algorithm and a variational segmentation algorithm are proposed to enhance the quality of SBall. Finally, applications of this structure are discussed.
基金Project (No. FEBQ24409102) supported by the Space Technology Innovation Fund, China
文摘Published research is minimal on vibration characteristics of hermetically sealed electromagnetic relay (EMR) ex- posed to mechanical environment. The vibration characteristics of armature system, link contact system with electromagnetic system will cause EMR malfunction. The nonlinear dynamics model of armature systems was studied by considering electro- magnetic attraction force and opposite mechanical force in this paper. Angular displacements of armature under different sinu- soidal vibration conditions are solved in order to obtain the failure mode result from armature system. Vibration tests showed the presented analyzing method is suitable for EMR. The conclusions are instructive for increasing vibration resistance of armature systems of EMR, and are significant for reliability design of switch apparatus.
基金Sponsored by the Ministerial Level Advanced Research Foundation (40407010305)
文摘A measurement system has been developed based on high-precision printed probes in printed circuit board (PCB) and steep rising-time probe adapters, which can be applied to study the expansion uniformity of armature in a helical magnetic flux compression generator (HFCG). The influences of wall thickness and initiation position on the expansion uniformity of armature in HFCG were experimentally investigated. The results show that the armature with thinner wall thickness will easily rupture due to the high pressure of detonation products inside, the armature with larger wall thickness will easily crack due to the tensile stress on the outer surface of the wall, the influence of the end effect on the expansion uniformity can be ignored if the distance between the first group of probe and the initiation point is more than 3 times the armature diameter.
基金supported in part by the National Natural Science Foundation of China under Grants 51991383 and 52025073。
文摘The paper develops accurate analytical subdomain models for predicting the magnetic and armature reaction fields in fault-tolerant flux-switching permanent-magnet machines.The entire region is divided into five subdomains,followed by rotor slots,air-gap,stator slots,PM,and external air-gap imported to account for flux leakage.The coil turns and the remanence of magnets are adjusted by keeping the magnetic and electrical loading on the motor constant.The distance between the centers of two adjacent stator slots varies due to the introduction of faulttolerant teeth.According to the variable separation method,the general solution expression of each region can be determined by solving the partial differential systems of equations.The magnetic field distributions of subdomains are obtained by applying the continuity conditions between adjacent regions.Some analytical field expressions are represented as new forms under armature reaction field condition compared to those under no-load condition.Based on the developed analytical models,the flux density distribution and the electromagnetic performance can be calculated under no-load or armature reaction field condition separately.The finite element analysis is carried out to verify the validity of the proposed analytical model.
基金Supported by the National Natural Science Foundation of China(52075468)the General Project of Natural Science Foundation of Hebei Prov-ince(E2020203052)+1 种基金the Open Fund Project of Shaanxi Provincial Key Laboratory of Hydraulic Technology(YYJS2022KF14)the BasicInnovation Research Cultivation Project of Yanshan University(2021LGZD003)。
文摘The feedback spring rod of the armature assembly is cancelled in the double redundance double nozzle flapper valve(DRDNFV),and the difficulty of valve core displacement control is increased.Therefore,this paper intends to study the static characteristic of DRDNFV through the AMESet and AMESim simulation.It is explored under the circumstance of the fixed orifices being clogged and experimentally verified on the test bench.The results show that the pressure gain increases and the flow gain decreases with the increasing clogged degree of the fixed orifices on both sides.The zero bias increases synchronously with the increasing clogged degree of the unilateral fixed orifice.The experimental results are basically consistent with the theoretical curves and the theoretical correctness of the simulation model is effectively verified.The results can provide the theoretical reference for design,debugging,maintenance and fault diagnosis of DRDNFV.
文摘The increase in the capacity and the improvement in the structure of large generatorsrequire better performance of their protection systems against armature faults. Therefore, itis desirous to further the study on the operation of synchronous machines with internal faultsin stator windings. For this purpose, the armature asymmetry of synchronous generatorsconnected to the power system and operating on load condition is analysed for the first timeby using the multi-loop method. In consideration of the power source a mathematical modelfor asymmetrical generators is established and its solution is proposed. Compared withexperimental results at rated voltage, the new approach is justified.
基金supported by National Natural Science Foundation of China(No.51675119)。
文摘The dynamic performance of a nozzle-flapper servo valve can be affected by several factors such as the disturbance of the input signal,the motion of the armature assembly and the oscillation of the jet force.As the part of vibrating at high frequency,the armature assembly plays a vital role during the operation of the servo valve.In order to accurately predict the transient response of the armature assembly during the vibration,a mathematical model of armature assembly is established based on the distributed parameters method(DPM)and Hamilton principle.The new mathematical model is composed of three main parts,the modal eigenfunction,modal mechanical response expressions of the spring tube and the motion equation of the other armature assembly.After programing,the purpose of using the DPM to predict the dynamic response of different positions located on the armature assembly is achieved.For verifying the validity of the mathematical model,the finite element method(FEM)and classic model(CM)of armature assembly are applicated by commercial software under the same condition.The comparison results prove that the DPM can effectively predict the axial and tangential deflection of the armature assembly different positions which the CM can’t duing to its over-simplification.A certain error is generated when predicting the axial deformation at different heights by DPM,which is caused by an approximate method to simulate the torsion of the spring tube.The comparison results of the spring tube deflection at different vibration frequencies shows that the adaptability of DPM is significantly higher than the classic model,which verify the model is more adaptable for predicting the dynamic response of the armature assembly.
文摘Based on the configuration of deep slot concen-trated coils,an analytical model is developed for predicting the armature reaction field produced by the 3-phase stator windings of permanent magnet brushless DC motors with concentrated coils by using the image method and the ana-lytical functions of the armature reaction and winding in-ductances are proposed accounting for the influence of sta-tor slotting.This approach is different from the method of equivalent distributed current sheet and more suitable for electric machines,which have concentrated coils and deeper slots.Under different control mode,the different analytical functions are presented.This will be helpful when further analyzing the performance of the motor.The results agree with the experiment very well.
文摘For characterizing a series augmented railgun launching process,the simulation and experiment were done.In the experiment,only observation of muzzle voltage,current and armature position were insufficient to analyze launching process deeply since armature velocity,resistance force and voltage drop of armature were also important to the launching process.In the present work,based on MATLAB/SIMULINK software platform,the simulation model was built,and the dynamic characteristics of system were simulated.Furthermore,the variations of armature velocity,total resistance force and voltage drop of armature against time were investigated based on the data of B-dot probes(to measure position of armature),Rogowsky coil(to monitor current) and high voltage probes(to observe muzzle voltage).The results indicated that,the voltage drop of armature and the total resistance force showed roughly regulartendency.There were obvious stages observed in the two-turn series augmented railgun launching process.
文摘Short circuit due to the brushes over the commutator segments of DC machines causes reduction in the armature resistance and flux linkage, which is especially meaningful when the electric machine is running at zero or extremely low speed. In design computation of DC machines, usually the average values of the coefficients are used in consideration of the effects of the short circuit. How-ever, the average values have complicated relationships with the parameters of electric machines, therefore, no usable mathematical model has been established yet for precise computation. In this paper, a relatively simple and generalized method for precise computation of the average values of the short-circuit coefficients is proposed. This method decouples some of the machine parameters and, therefore establishes a highly parameterized mathematical model and is convenient in formulation for computation. In addition, the computation data for one and two brush pairs, which are the most common cases, is provided.
文摘The authors have invented a unique counter-rotating type tidal stream power unit, which is composed of tandem propellers and a double rotational armature type generator without a stator. The front and the rear propellers drive, as for an upstream type, the inner and the outer rotational armatures in the counter-rotating directions respectively, which keep the rotational torques counter-balanced between both propellers and armatures. This paper investigates experimentally the output and forces acting on a pile in a water channel, to get design materials of the mono-pile type tidal stream power unit. The output is maximal at the moderate rotational speed, as the same as a wind turbine. The force acting on the pile is affected by the drag, the Karman vortex and the dynamic balances of the tandem propellers, and has dominant frequencies due to not only the individual but also the interacting rotation of the front and the rear propellers.
文摘The counter-rotating type hydroelectric unit, which is composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures, has been proposed. In the unit, the front and the rear runners counter-drive the inner and the outer armatures of the generator, respectively. Besides, the flow direction at the rear runner outlet must coincide with the direction at the front runner inlet, because the angular momentum change through the rear runner must coincides with that through the front runner. In this paper, the tandem runners work at on-cam conditions in keeping the induced frequency constant, to provide the hydroelectric unit for the power grid system. The output and the hydraulic efficiency are affected by the adjusting angles of the front and the rear blades. Both optimum angles giving the maximum output or efficiency were presented at the various discharge/head circumstances, accompanying with the turbine performances.
文摘The counter-rotating type tidal range power unit composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures is proposed to utilize effectively the tidal range. In the unit, the front and the rear runners counter-drive the inner and the outer armatures of the generator, respectively. Besides, the flow runs in the axial direction at the rear runner outlet while the flow has not the swirling component at the front runner inlet, because the angular momentum change through the rear runner must coincides with that through the front runner. Such operations are suitable for bidirectional flows, namely working at the seashore with the rising and the falling tidal ranges, and the unit may be able to take place of the traditional bulb type turbines. To promote more the tidal power generation by this type unit, the runners were modified so as to be suitable for both rising and falling flows. The hydraulic performances are acceptable and take the optimum efficiency at the on-cam operation, while the trailing profiles of the runner blades determine mainly the theoretical output.
基金Sponsored by the Heilongjiang 11th Five-year Key Project of Scientific and Technological(Grant No.GA06A305)
文摘To improve the vehicle dynamic performance and ultra-capacitor operating circumstance,this paper studied the multi-current-two-quadrant converter applied to drive high power DC motor in ultra-capacitor electric bus(UCEB).Compared with normal current-two-quadrant converter,the multi-current-two-quadrant converter can reduce the motor armature current ripple and the ultra-capacitor current ripple.Moreover,it improves power capabilities,reliability and fault tolerant capability of driving system.After analyzing the structure and working principle of the multi-current-two-quadrant converter,the expressions of armature current ripple and the quantitative relationships between the ultra-capacitor power loss and duty cycle were derived.The simulation and experimental results showed that the multi-current-two-quadrant converter has great advantages in reducing the armature current ripple and ultra-capacitor power loss,which can improve the vehicle performance and overall efficiency.
文摘When a direct-current (DC) machine runs at extremely low speed or standstill, the reduction in the armature resistance and the armature flux linkage due to the short circuited coils by the brushes on the commutator should not be neglected. Taking this reduction effect into account, the average values of the reduction coefficients relate to the machine parameters in complicated forms. In this paper, an effective algorithm for the precise computation of the average values of these reduction coefficients is proposed. Furthermore, in the algorithm, the effect of the insulation thickness between the commutator segments and the multiplicity of the wave winding are considered for the first time. The proposed algorithm can also be accommodated into the computer-aided design (CAD) of a DC machine, which normally runs at extremely low speed or standstill.
基金This work was supported by the Natural Science Foundation of China under Grant 51307031 and part by the Natural Science Foundation of Heilongjiang Province under Grant E2018034 and China Postdoctoral Science Foundation funded project under Grant 2019M651185.
文摘Demagnetization behavior of Halbach magnetized compensated pulsed alternator(CPA)is studied by using finite element method(FEM)under the different demagnetization factors in this paper.The effect of armature reaction magnetic field and thermal rise on demagnetization of PMs is analyzed.This paper investigates the effect of different demagnetization factors on magnetic field distribution,load current,and no-load phase voltage.A series of dynamic demagnetization points in Halbach array permanent magnet(PM)are evaluated to search the worst working point.Partial demagnetization risk can be represented by the worst working point,and the global demagnetization of the PM is represented by the no-load phase voltage characteristics after discharge.The research results demonstrated that the compensation shield with a certain thickness can increase the discharge current and weaken the demagnetization influence of armature reaction.The demagnetization effect of armature reaction on PMs at high temperatures will be strengthened.