The reaction mechanism between CC12 and armchair single-walled carbon nanotubes (ASWCNTs) (3,3) and (4,4) has been studied by semiempirical AM1 and ab initio methods. The activation barriers of CC12 adding to AS...The reaction mechanism between CC12 and armchair single-walled carbon nanotubes (ASWCNTs) (3,3) and (4,4) has been studied by semiempirical AM1 and ab initio methods. The activation barriers of CC12 adding to ASWCNT (3,3) and (4,4) are computed and compared. The lower barrier of CC12 forms cycloaddition isomer on (3,3) maybe because the strain energy of (3,3) is larger than that of (4,4). Our theoretical results are consistent with the experimental results.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 20303010), NKStar HPC Program and the Science Foundation of Nankai University
文摘The reaction mechanism between CC12 and armchair single-walled carbon nanotubes (ASWCNTs) (3,3) and (4,4) has been studied by semiempirical AM1 and ab initio methods. The activation barriers of CC12 adding to ASWCNT (3,3) and (4,4) are computed and compared. The lower barrier of CC12 forms cycloaddition isomer on (3,3) maybe because the strain energy of (3,3) is larger than that of (4,4). Our theoretical results are consistent with the experimental results.