The abalone shell,a composite material whose cross-section is composed of inorganic and organic layers,has high strength and toughness.Inspired by the abalone shell,several multi-layer composite plates with different ...The abalone shell,a composite material whose cross-section is composed of inorganic and organic layers,has high strength and toughness.Inspired by the abalone shell,several multi-layer composite plates with different layer sequences and thicknesses are studied as bullet-proof material in this paper.To investigate the ballistic performance of this multi-layer structure,the complete characterization model and related material parameters of large deformation,failure and fracture ofAl_(2)O_(3)ceramics andCarbon Fiber Reinforced Polymer(CFRP)are studied.Then,3D finite element models of the proposed composite plates with different layer sequences and thicknesses impacted by a 12.7 mm armor-piercing incendiary(API)are built using Abaqus to predict failure.The simulation results show that the CFRP/Al2O3 ceramic/Ultrahigh Molecular Weight Polyethylene(UHMWPE)/CFRP(1 mm/4 mm/4 mm/1 mm)composite is the optimized stack of layers.The simulation results under specified layer sequence and thickness have a reasonable correlation with the experimental results and reflect the failure and fracture of the multi-layer composite protective armor.展开更多
The experimental research on protection capability of the flying-whip multifunctional explosive reactive armor (ERA) was performed, in which the comparison experiment was made on the damage effect of the flying-whip...The experimental research on protection capability of the flying-whip multifunctional explosive reactive armor (ERA) was performed, in which the comparison experiment was made on the damage effect of the flying-whip's geometrical figuration, material property and driven velocity on the long-rod armor-piercing-projectile. The moving velocity of the flying-whip driven by different explosives and the pressure attenuation law of shock wave travelling in the back plate were measured respectively with the electric probe method and the manganin piezoresistive gauge technique. The following conclusions based on a great quantity of experimental data were drawn: compared with the sandwich ERA the flying-whip multifunctional ERA has very good protection function against the long-rod armor-piercing-projectile, the shaped charge warhead and the anti-armor tandem warhead. In addition, the composite plate made of the armor-steel and rubber plate can lessen the vibration and shock of the main armor caused by the explosion of the charge..展开更多
基金funded by the National Natural Science Foundation of China(W.Zhang,Grant No.12220101002)Shaanxi Provincial Key Science and Technology Innovation Team(Y.Xu,Grant No.2023-CX-TD-14)+1 种基金the Young Talent Fund of Association for Science and Technology in Shaanxi,China(D.Jia,Grant No.20230240)the Chinese Studentship Council(D.Jia,Grant No.201908060224).
文摘The abalone shell,a composite material whose cross-section is composed of inorganic and organic layers,has high strength and toughness.Inspired by the abalone shell,several multi-layer composite plates with different layer sequences and thicknesses are studied as bullet-proof material in this paper.To investigate the ballistic performance of this multi-layer structure,the complete characterization model and related material parameters of large deformation,failure and fracture ofAl_(2)O_(3)ceramics andCarbon Fiber Reinforced Polymer(CFRP)are studied.Then,3D finite element models of the proposed composite plates with different layer sequences and thicknesses impacted by a 12.7 mm armor-piercing incendiary(API)are built using Abaqus to predict failure.The simulation results show that the CFRP/Al2O3 ceramic/Ultrahigh Molecular Weight Polyethylene(UHMWPE)/CFRP(1 mm/4 mm/4 mm/1 mm)composite is the optimized stack of layers.The simulation results under specified layer sequence and thickness have a reasonable correlation with the experimental results and reflect the failure and fracture of the multi-layer composite protective armor.
文摘The experimental research on protection capability of the flying-whip multifunctional explosive reactive armor (ERA) was performed, in which the comparison experiment was made on the damage effect of the flying-whip's geometrical figuration, material property and driven velocity on the long-rod armor-piercing-projectile. The moving velocity of the flying-whip driven by different explosives and the pressure attenuation law of shock wave travelling in the back plate were measured respectively with the electric probe method and the manganin piezoresistive gauge technique. The following conclusions based on a great quantity of experimental data were drawn: compared with the sandwich ERA the flying-whip multifunctional ERA has very good protection function against the long-rod armor-piercing-projectile, the shaped charge warhead and the anti-armor tandem warhead. In addition, the composite plate made of the armor-steel and rubber plate can lessen the vibration and shock of the main armor caused by the explosion of the charge..