When anti-ship missiles penetrate into the ship armor, fragments and shock waves caused by explosion will severely destroy the personnel and equipment on the ships. In this study, three double-layer bulkheads with dif...When anti-ship missiles penetrate into the ship armor, fragments and shock waves caused by explosion will severely destroy the personnel and equipment on the ships. In this study, three double-layer bulkheads with different interior sandwich structures were investigated, including X and hexagonal combined sandwich structure, cross-type honeycomb sandwich struc-ture and cell growth type honeycomb sandwich structure. The penetration processes of three different bulkhead structures were simulated by software ANSYS/LS-DYNA. The simulation shows that the double-layer bulkhead with cross-type honeycomb sandwich structure is the most suitable. Finally, the dynamic response characteristics of the cross-type sandwich bulkhead structure are analyzed.展开更多
文摘When anti-ship missiles penetrate into the ship armor, fragments and shock waves caused by explosion will severely destroy the personnel and equipment on the ships. In this study, three double-layer bulkheads with different interior sandwich structures were investigated, including X and hexagonal combined sandwich structure, cross-type honeycomb sandwich struc-ture and cell growth type honeycomb sandwich structure. The penetration processes of three different bulkhead structures were simulated by software ANSYS/LS-DYNA. The simulation shows that the double-layer bulkhead with cross-type honeycomb sandwich structure is the most suitable. Finally, the dynamic response characteristics of the cross-type sandwich bulkhead structure are analyzed.