Dambreak-induced bed scouring may undermine the foundation of bridge piers and other structures,and that destruction can pose a serious threat.Consequently,this paper aims at exploring the mechanisms of scouring and a...Dambreak-induced bed scouring may undermine the foundation of bridge piers and other structures,and that destruction can pose a serious threat.Consequently,this paper aims at exploring the mechanisms of scouring and armoring.Firstly,the incipient velocity for nonuniform sediment particles was studied,and a formula was derived based on the angle of repose of nonuniform sediment.The results showed that the mechanism of incipient motion for sand and fine gravel differed from that for coarse gravel and cobbles.Also,comparison between experimental and field data shows that the results from the proposed formula agree well with those observed for all conditions.Secondly,a birth-death,immigration-emigration Markov process was developed to describe the bed load transport rate associated with scouring and armoring.The comparison between experimental data and computed results shows that our model can predict the bed load transport rate,although there may be some limitations,the chief of which is that there are many variables in the model to be determined through experiment.This makes its application in river engineering inconvenient.展开更多
Flume experiments were carried out to study bed load transport rate during rive bed scouring and ar- moring.A theoretical differential equation linking the transport rate to the probability of incipient motion of non-...Flume experiments were carried out to study bed load transport rate during rive bed scouring and ar- moring.A theoretical differential equation linking the transport rate to the probability of incipient motion of non-uniform sediment is solved.The transport rate is shown to decrease exponentially with time,according to the theory,which is in good agreement with the experiment data.展开更多
A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented i...A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented in this study.CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component.The CAP proposal comprises four functional layers,organized in a suggested hierarchy of materials.Particularly notable is the inclusion of a ceramic-composite principle,representing an advanced and innovative solution in the field of armor design.This paper showcases real-world defense industry applications,offering case studies that demonstrate the effectiveness of this advanced approach.CAP represents a significant milestone in the history of passive protection,marking an evolutionary leap in the field.This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles,making them more resilient and better equipped to meet the challenges of modern warfare.展开更多
The abalone shell,a composite material whose cross-section is composed of inorganic and organic layers,has high strength and toughness.Inspired by the abalone shell,several multi-layer composite plates with different ...The abalone shell,a composite material whose cross-section is composed of inorganic and organic layers,has high strength and toughness.Inspired by the abalone shell,several multi-layer composite plates with different layer sequences and thicknesses are studied as bullet-proof material in this paper.To investigate the ballistic performance of this multi-layer structure,the complete characterization model and related material parameters of large deformation,failure and fracture ofAl_(2)O_(3)ceramics andCarbon Fiber Reinforced Polymer(CFRP)are studied.Then,3D finite element models of the proposed composite plates with different layer sequences and thicknesses impacted by a 12.7 mm armor-piercing incendiary(API)are built using Abaqus to predict failure.The simulation results show that the CFRP/Al2O3 ceramic/Ultrahigh Molecular Weight Polyethylene(UHMWPE)/CFRP(1 mm/4 mm/4 mm/1 mm)composite is the optimized stack of layers.The simulation results under specified layer sequence and thickness have a reasonable correlation with the experimental results and reflect the failure and fracture of the multi-layer composite protective armor.展开更多
To enhance the protective performance of ceramic composite armor,ballistic penetration experiments were conducted on Al_(2)O_(3) ceramic-ultra-high molecular weight polyethylene(UHMWPE)composite armor with different t...To enhance the protective performance of ceramic composite armor,ballistic penetration experiments were conducted on Al_(2)O_(3) ceramic-ultra-high molecular weight polyethylene(UHMWPE)composite armor with different thickness configurations.The damage and failure modes of hard projectiles and ceramic-fiber composite targets were analyzed.The recovered projectiles and ceramic fragments were sieved and weighed at multiple stages,revealing a positive correlation between the degree of fragmentation of the projectiles and ceramics and the overall ballistic resistance of the composite targets.Numerical simulations were performed using the LS-DYNA finite element software,and the simulation results showed high consistency with the experimental results,confirming the validity of the material parameters.The results indicate that the projectile heads primarily exhibited crushing and abrasive fragmentation.Larger projectile fragments mainly resulted from tensile and shear stress-induced failure.The failure modes of the composite targets included the formation of ceramic cones and radial cracks under high-velocity impacts.The UHMWPE laminated plates exhibited interlayer separation caused by tensile waves,permanent plastic deformation of the rear surface bulging,and perforation failure primarily due to shear forces.Through extended numerical simulations,while maintaining the same areal density and configuration of9 mm Al_(2)O_(3) ceramic+12 mm UHMWPE laminated composite armor,the thickness configurations of the Al_(2)O_(3) ceramic and UHMWPE laminated backplates were varied,and various thicknesses of UHMWPE laminates were simulated as the cover layer for the ceramic panels.The simulation results indicated that the composite armor configuration of 10 mm Al_(2)O_(3) ceramic+8 mm UHMWPE composite armor increased energy absorption by13.48%.When altering the cover layer thickness,a 4 mm UHMWPE+9 mm Al_(2)O_(3)+8 mm UHMWPE composite armor demonstrated a 27.11%improvement in energy absorption,showing a relatively significant enhancement.展开更多
The Altomani&Sons Collection owns a remarkable newly discovered portrait of Guidobaldo II della Rovere,Duke of Urbino(1514-1574),a historical military figure who was a condottiere,ruler of Urbino,Commander-in-chie...The Altomani&Sons Collection owns a remarkable newly discovered portrait of Guidobaldo II della Rovere,Duke of Urbino(1514-1574),a historical military figure who was a condottiere,ruler of Urbino,Commander-in-chief of the Papal Estate,and Perfect of Rome,as well as a collector and patron of the Fine Arts.Camilla Guerrieri Nati(1628-1694),a seventeenth-century Italian painter from Fossombrone(in the province of Pesaro and Urbino),portrayed this heroic personage surrounded by emblems associated with his military courage and leadership,including his plumed burgonet helmet,metal gilded armor,a necklace with the golden fleece,and batons of secular and religious dominions.This oil painting on copper-considered a precious metal at the time-emphasizes the importance of the commission.The material and technique also reveals a unique artistic achievement in that it provides the painting with a smooth,reflective surface and vibrant coloration,symbolizing precious imagery.展开更多
In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pu...In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pumping voltage and PWM ratio is derived and a new digital control method to restrain the pumping voltage by changing PWM ratio is put forward. Because the capacitance is decreased effectively, the volume of controller is reduced and the performance to price ratio is improved. The results of computer simulation and experiment proved that this method is feasible and valid.展开更多
A numerical model to simulate the bed degradation process in a straight alluvial channel with respect to time and distance is introduced. The simulation takes into account the effect of non uniformity of the bed ma...A numerical model to simulate the bed degradation process in a straight alluvial channel with respect to time and distance is introduced. The simulation takes into account the effect of non uniformity of the bed material, and variations in the dimension of bed forms. The model predicts the changes in the grain size distribution with the time and space during degradation process. The numerical model proposes that the armoring process in degrading channels does not depend only on hydraulic characteristics of the flow but also on variation in the grain size distribution of sediments on the bed. The model was applied and compared with the results obtained from experiments conducted in 24 m recirculating flume for two sizes of sand; a good agreement was found between observed and calculated values.展开更多
Sandy inlets are in a dynamic equilibrium between wave-driven littoral drift acting to close them,and tidal flows keeping them open.Their beds are in a continual state of suspension and deposition,so their bathymetry ...Sandy inlets are in a dynamic equilibrium between wave-driven littoral drift acting to close them,and tidal flows keeping them open.Their beds are in a continual state of suspension and deposition,so their bathymetry and even location are always in flux.Even so,a nearly linear relationship between an inlet’s cross-sectional flow area and the inshore tidal prism is maintained-except when major wind and/or runoff events act to close or widen an inlet.Inlet location can be stabilized by jetties,but dredging may still be necessary to maintain a navigable channel.Armoring with rock large enough to resist erosion can protect an inlet bed or river mouth from excessive storm flow erosion.Armoring can also be used as a stratagem to close inlets.展开更多
This is a very timely review of body armour materials and systems since new test standards are currently being written, or reviewed, and new, innovative products released. Of greatest importance, however, is the recen...This is a very timely review of body armour materials and systems since new test standards are currently being written, or reviewed, and new, innovative products released. Of greatest importance, however, is the recent evolution, and maturity, of the Ultra High Molecular Weight Polyethylene fibres enabling a completely new style of system to evolve e a stackable system of Hard Armour Plates. The science of body armour materials is quickly reviewed with emphasis upon current understanding of relevant energy-absorbing mechanisms in fibres, fabrics, polymeric laminates and ceramics. The trend in ongoing developments in ballistic fibres is then reviewed, analysed and future projections offered. Weaknesses in some of the ceramic grades are highlighted as is the value of using cladding materials to improve the robustness, and multi-strike performance, of Hard Armour Plates. Finally, with the drive for lighter, and therefore smaller, soft armour systems for military personnel the challenges for armour designers are reported, and the importance of the relative size of the Hard Armour Plate to the Soft Armour Insert is strongly emphasised.展开更多
Chain damage is a new phenomenon that occurs when a reactive jet impacts and penetrates multispaced plates.The reactive jet produces mechanical perforations on the spaced plates by its kinetic energy(KE),and then resu...Chain damage is a new phenomenon that occurs when a reactive jet impacts and penetrates multispaced plates.The reactive jet produces mechanical perforations on the spaced plates by its kinetic energy(KE),and then results in unusual chain rupturing effects and excessive structural damage on the spaced plates by its deflagration reaction.In the present study,the chain damage behavior is initially demonstrated by experiments.The reactive liners,composed of 26 wt%Al and 74 wt%PTFE,are fabricated through a pressing and sintering process.Three reactive liner thicknesses of 0.08 CD,0.10 CD and 0.12 CD(charge diameter)are chosen to carry out the chain damage experiments.The results show a chain rupturing phenomenon caused by reactive jet.The constant reaction delay time and the different penetration velocities of reactive jets from liners with different thicknesses result in the variation of the deflagration position,which consequently determines the number of ruptured plates behind the armor.Then,the finite-element code AUTODYN-3D has been used to simulate the kinetic energy only-induced rupturing effects on plates,based on the mechanism of behind armor debris(BAD).The significant discrepancies between simulations and experiments indicate that one enhanced damage mechanism,the behind armor blast(BAB),has acted on the ruptured plates.Finally,a theoretical model is used to consider the BAB-induced enhancement,and the analysis shows that the rupturing area on aluminum plates depends strongly upon the KE only-induced pre-perforations,the mass of reactive materials,and the thickness of plates.展开更多
Explosive Reactive Armor was originally modeled under the assumption that the plates in the cassettes were very thin.Hence their thickness could be ignored,and the thicknesses of the plates were considered only based ...Explosive Reactive Armor was originally modeled under the assumption that the plates in the cassettes were very thin.Hence their thickness could be ignored,and the thicknesses of the plates were considered only based on their areal mass density.In particular,it was assumed that the jet-plate interaction was controlled by the plates to jet-mass-flux ratio criteria for a specific jet velocity and diameter.In the present study,we extended this analysis,examining the effect of the variation of the mass-flux along the jet on the disruption effect by the two plates.In addition,we examined the thickness effect of the plates on the plate's effectiveness,replacing the steel plates by low-density materials like aluminum and polycarbonate.The mass-flux model was adjusted to account for the plate-thickness effect.It was found that increasing the thickness of the plate,keeping the areal weight unchanged,slightly increases the overall effectiveness of the cassette,in particular by the forward moving plate interacting with the center and the slow parts of the jet.展开更多
AA5059 is one of the high strength armor grade aluminium alloy that finds its applications in the military vehicles due to the higher resistance against the armor piercing (AP) threats. This study aimed at finding the...AA5059 is one of the high strength armor grade aluminium alloy that finds its applications in the military vehicles due to the higher resistance against the armor piercing (AP) threats. This study aimed at finding the best suitable process among the fusion welding processes such as gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) by evaluating the tensile properties of AA5059 aluminium alloy joints. The fracture path was identified by mapping the low hardness distribution profile (LHDP) across the weld cross section under tensile loading. Optical and scanning electron microscopies were used to characterize the microstructural features of the welded joints at various zones. It is evident from the results that GTAW joints showed superior tensile properties compared to GMAW joints and this is primarily owing to the presence of finer grains in the weld metal zone (WMZ) and narrow heat-affected zone (HAZ). The lower heat input associated with the GTAW process effectively reduced the size of the WMZ and HAZ compared to GMAW process. Lower heat input of GTAW process results in faster cooling rate which hinders the grain growth and reduces the evaporation of magnesium in weld metal compared to GMAW joints. The fracture surface of GTAW joint consists of more dimples than GMAW joints which is an indication that the GTAW joint possess improved ductility than GMAW joint.展开更多
Pressure wave plays an important role in the occurrence of behind armor blunt trauma(BABT),and ballistic gelatin is widely used as a surrogate of biological tissue in the research of BABT.Comparison of pressure wave i...Pressure wave plays an important role in the occurrence of behind armor blunt trauma(BABT),and ballistic gelatin is widely used as a surrogate of biological tissue in the research of BABT.Comparison of pressure wave in the gelatin behind armor for different rifle bullets is lacking.The aim of this study was to observe dynamic changes in pressure wave induced by ballistic blunt impact on the armored gelatin block and to compare the effects of bullet type on the parameters of the transient pressure wave.The gelatin blocks protected with National Institute of Justice(NIJ) class III bulletproof armor were shot by three types of rifle bullet with the same level of impact energy.The transient pressure signals at five locations were recorded with pressure sensors and three parameters(maximum pressure,maximum pressure impulse,and the duration of the first positive phase) were determined and discussed.The results indicated that the waveform and the twin peak of transient pressure wave were not related to the bullet type.However,the values of pressure wave's parameters were significantly affected by bullet type.Additionally,the attenuation of pressure amplitude followed the similar law for the three ammunitions.These findings may be helpful to get some insight in the BABT and improve the structure design of bullet.展开更多
This paper presents analytical and numerical models to predict the behavior of unbonded flexible risers under torsion.The analytical model takes local bending and torsion of tensile armor wires into consideration,and ...This paper presents analytical and numerical models to predict the behavior of unbonded flexible risers under torsion.The analytical model takes local bending and torsion of tensile armor wires into consideration,and equilibrium equations of forces and displacements of layers are deduced.The numerical model includes lay angle,cross-sectional profiles of carcass,pressure armor layer and contact between layers.Abaqus/Explicit quasi-static simulation and mass scaling are adopted to avoid convergence problem and excessive computation time caused by geometric and contact nonlinearities.Results show that local bending and torsion of helical strips may have great influence on torsional stiffness,but stress related to bending and torsion is negligible;the presentation of anti-friction tapes may have great influence both on torsional stiffness and stress;hysteresis of torsion-twist relationship under cyclic loading is obtained by numerical model,which cannot be predicted by analytical model because of the ignorance of friction between layers.展开更多
By using split Hopkinson pressure bar, optical microscopy and electronic microscopy, we investigate the influence of initial microstructures on the adiabatic shear behavior of high-strength Ti-5Al-5V-5Mo-3Cr(Ti-5553) ...By using split Hopkinson pressure bar, optical microscopy and electronic microscopy, we investigate the influence of initial microstructures on the adiabatic shear behavior of high-strength Ti-5Al-5V-5Mo-3Cr(Ti-5553) alloy with lamellar microstructure and bimodal microstructure. Lamellar alloy tends to form adiabatic shearing band(ASB) at low compression strain, while bimodal alloy is considerably ASBresistant. Comparing with the initial microstructure of Ti-5553 alloy, we find that the microstructure of the ASB changes dramatically. Adiabatic shear of lamellar Ti-5553 alloy not only results in the formation of recrystallized β nano-grains within the ASB, but also leads to the chemical redistribution of the alloying elements such as Al, V, Cr and Mo. As a result, the alloying elements distribute evenly in the ASB.In contrast, the dramatic adiabatic shear of bimodal alloy might give rise to the complete lamination of the globular primary a grain and the equiaxial prior β grain, which is accompanied by the dynamic recrystallization of a lamellae and β lamellae. As a result, ASB of bimodal alloy is composed of a/β nanomultilayers. Chemical redistribution does not occur in ASB of bimodal alloy. Bimodal Ti-5553 alloy should be a promising candidate for high performance armors with high mass efficiency due to the processes high dynamic flow stress and excellent ASB-resistance.展开更多
Tin selenide(SnSe)is considered as a potential anode for sodium-ion batteries(SIBs)owing to its high theoretical specific capacity.Unfortunately,it suffers from drastic volume expansion/contraction during sodium ions ...Tin selenide(SnSe)is considered as a potential anode for sodium-ion batteries(SIBs)owing to its high theoretical specific capacity.Unfortunately,it suffers from drastic volume expansion/contraction during sodium ions insertion/extraction,resulting in poor cycling stability.Herein,a pomegranate-inspired porous carbon shell wrapped heterogeneous SnSe/ZnSe composite(SnSe/ZnSe@C)is exquisitely designed and fabricated through electrostatic spraying followed by high-temperature selenization.The polyacrylonitrile-derived carbon shell acts as an adhesive to link the porous cubic SnSe/ZnSe and form highly interconnected microcircuits to improve the electron/ion transfer efficiency and inhibit the bulk volume change of internal metallic selenide nanoparticles and polyselenides dissolution during repeated cycling.Moreover,the abundant heterostructure interface of SnSe/ZnSe further significantly accelerates the electrons/ions transport.As a result,the as-prepared SnSe/ZnSe@C electrode exhibits a high specific capacity(508.3 m Ah g^(-1)at 0.05 A g^(-1)),excellent rate performance(177.8 m Ah g^(-1)at 10.0 A g^(-1)),and remarkable cycling stability(195.9 m Ah g^(-1)after 10,000 cycles at 5.0 A g^(-1)).Furthermore,in-situ Xray diffraction(XRD)/Raman,ex-situ transmission electron microscopy,and kinetic analysis clearly reveal a four-step electrochemical reaction process and battery-capacitor dual-mode sodium storage mechanism.This work provides a new perspective for developing commercial SIBs anode materials with high capacity and long lifespan.展开更多
With increasing ballistic threat levels,there is ever more demand on developing ceramic armor designs with improved performance.This paper presents finite element simulations that investigate the performance of silico...With increasing ballistic threat levels,there is ever more demand on developing ceramic armor designs with improved performance.This paper presents finite element simulations that investigate the performance of silicon carbide ceramic with steel 4340 backing material and titanium alloy,graphite as buffer layers when subjected to normal and oblique impacts by a tungsten alloy long rod projectile(LRP).Depth of penetration from experimental measurements is compared with simulations to confirm the validity of constitutive,failure model parameters.Titanium alloy cover plate and graphite interface weak layer laterally spread the impact shock away from the SiC tile and reduces the amplification of the stress accumulation at the front surface of the SiC tile.The dwelling time increases before it penetrates into ceramic armor.Further,using AUTODYN®numerical simulations detailed parametric study is carried out to identify the minimum areal density armor for a given ballistic limit velocity.The equivalent protection factor for the bi-layer armor is a simple function of the cosine of the angle of impact.展开更多
Principles of dimensional analysis are applied in a new interpretation of penetration of ceramic targets subjected to hypervelocity impact. The analysis results in a power series representation – in terms of inverse ...Principles of dimensional analysis are applied in a new interpretation of penetration of ceramic targets subjected to hypervelocity impact. The analysis results in a power series representation – in terms of inverse velocity – of normalized depth of penetration that reduces to the hydrodynamic solution at high impact velocities. Specifically considered are test data from four literature sources involving penetration of confined thick ceramic targets by tungsten long rod projectiles. The ceramics are AD-995 alumina, aluminum nitride, silicon carbide, and boron carbide.Test data can be accurately represented by the linear form of the power series, whereby the same value of a single fitting parameter applies remarkably well for all four ceramics. Comparison of the present model with others in the literature(e.g., Tate's theory) demonstrates a target resistance stress that depends on impact velocity, linearly in the limiting case. Comparison of the present analysis with recent research involving penetration of thin ceramic tiles at lower typical impact velocities confirms the importance of target properties related to fracture and shear strength at the Hugoniot Elastic Limit(HEL) only in the latter. In contrast, in the former(i.e., hypervelocity and thick target) experiments, the current analysis demonstrates dominant dependence of penetration depth only by target mass density. Such comparisons suggest transitions from microstructure-controlled to density-controlled penetration resistance with increasing impact velocity and ceramic target thickness.Production and hosting by Elsevier B.V. on behalf of China Ordnance Society.展开更多
基金supported by 973 Program (2008CB425803)the National Natural Science Foundation of China (Grant No. 50979064)
文摘Dambreak-induced bed scouring may undermine the foundation of bridge piers and other structures,and that destruction can pose a serious threat.Consequently,this paper aims at exploring the mechanisms of scouring and armoring.Firstly,the incipient velocity for nonuniform sediment particles was studied,and a formula was derived based on the angle of repose of nonuniform sediment.The results showed that the mechanism of incipient motion for sand and fine gravel differed from that for coarse gravel and cobbles.Also,comparison between experimental and field data shows that the results from the proposed formula agree well with those observed for all conditions.Secondly,a birth-death,immigration-emigration Markov process was developed to describe the bed load transport rate associated with scouring and armoring.The comparison between experimental data and computed results shows that our model can predict the bed load transport rate,although there may be some limitations,the chief of which is that there are many variables in the model to be determined through experiment.This makes its application in river engineering inconvenient.
文摘Flume experiments were carried out to study bed load transport rate during rive bed scouring and ar- moring.A theoretical differential equation linking the transport rate to the probability of incipient motion of non-uniform sediment is solved.The transport rate is shown to decrease exponentially with time,according to the theory,which is in good agreement with the experiment data.
基金co-financed by the European Regional Development Fund of the European UnionGreek national funds through the Operational Program Competitiveness,Entrepreneurship and Innovation,under the call RESEARCH-CREATE-INNOVATE(project code:T1EDK-04429)。
文摘A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented in this study.CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component.The CAP proposal comprises four functional layers,organized in a suggested hierarchy of materials.Particularly notable is the inclusion of a ceramic-composite principle,representing an advanced and innovative solution in the field of armor design.This paper showcases real-world defense industry applications,offering case studies that demonstrate the effectiveness of this advanced approach.CAP represents a significant milestone in the history of passive protection,marking an evolutionary leap in the field.This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles,making them more resilient and better equipped to meet the challenges of modern warfare.
基金funded by the National Natural Science Foundation of China(W.Zhang,Grant No.12220101002)Shaanxi Provincial Key Science and Technology Innovation Team(Y.Xu,Grant No.2023-CX-TD-14)+1 种基金the Young Talent Fund of Association for Science and Technology in Shaanxi,China(D.Jia,Grant No.20230240)the Chinese Studentship Council(D.Jia,Grant No.201908060224).
文摘The abalone shell,a composite material whose cross-section is composed of inorganic and organic layers,has high strength and toughness.Inspired by the abalone shell,several multi-layer composite plates with different layer sequences and thicknesses are studied as bullet-proof material in this paper.To investigate the ballistic performance of this multi-layer structure,the complete characterization model and related material parameters of large deformation,failure and fracture ofAl_(2)O_(3)ceramics andCarbon Fiber Reinforced Polymer(CFRP)are studied.Then,3D finite element models of the proposed composite plates with different layer sequences and thicknesses impacted by a 12.7 mm armor-piercing incendiary(API)are built using Abaqus to predict failure.The simulation results show that the CFRP/Al2O3 ceramic/Ultrahigh Molecular Weight Polyethylene(UHMWPE)/CFRP(1 mm/4 mm/4 mm/1 mm)composite is the optimized stack of layers.The simulation results under specified layer sequence and thickness have a reasonable correlation with the experimental results and reflect the failure and fracture of the multi-layer composite protective armor.
基金supported by the National Natural Science Foundation of China(Grant Nos.12172179,U2341244,and 11772160)。
文摘To enhance the protective performance of ceramic composite armor,ballistic penetration experiments were conducted on Al_(2)O_(3) ceramic-ultra-high molecular weight polyethylene(UHMWPE)composite armor with different thickness configurations.The damage and failure modes of hard projectiles and ceramic-fiber composite targets were analyzed.The recovered projectiles and ceramic fragments were sieved and weighed at multiple stages,revealing a positive correlation between the degree of fragmentation of the projectiles and ceramics and the overall ballistic resistance of the composite targets.Numerical simulations were performed using the LS-DYNA finite element software,and the simulation results showed high consistency with the experimental results,confirming the validity of the material parameters.The results indicate that the projectile heads primarily exhibited crushing and abrasive fragmentation.Larger projectile fragments mainly resulted from tensile and shear stress-induced failure.The failure modes of the composite targets included the formation of ceramic cones and radial cracks under high-velocity impacts.The UHMWPE laminated plates exhibited interlayer separation caused by tensile waves,permanent plastic deformation of the rear surface bulging,and perforation failure primarily due to shear forces.Through extended numerical simulations,while maintaining the same areal density and configuration of9 mm Al_(2)O_(3) ceramic+12 mm UHMWPE laminated composite armor,the thickness configurations of the Al_(2)O_(3) ceramic and UHMWPE laminated backplates were varied,and various thicknesses of UHMWPE laminates were simulated as the cover layer for the ceramic panels.The simulation results indicated that the composite armor configuration of 10 mm Al_(2)O_(3) ceramic+8 mm UHMWPE composite armor increased energy absorption by13.48%.When altering the cover layer thickness,a 4 mm UHMWPE+9 mm Al_(2)O_(3)+8 mm UHMWPE composite armor demonstrated a 27.11%improvement in energy absorption,showing a relatively significant enhancement.
文摘The Altomani&Sons Collection owns a remarkable newly discovered portrait of Guidobaldo II della Rovere,Duke of Urbino(1514-1574),a historical military figure who was a condottiere,ruler of Urbino,Commander-in-chief of the Papal Estate,and Perfect of Rome,as well as a collector and patron of the Fine Arts.Camilla Guerrieri Nati(1628-1694),a seventeenth-century Italian painter from Fossombrone(in the province of Pesaro and Urbino),portrayed this heroic personage surrounded by emblems associated with his military courage and leadership,including his plumed burgonet helmet,metal gilded armor,a necklace with the golden fleece,and batons of secular and religious dominions.This oil painting on copper-considered a precious metal at the time-emphasizes the importance of the commission.The material and technique also reveals a unique artistic achievement in that it provides the painting with a smooth,reflective surface and vibrant coloration,symbolizing precious imagery.
文摘In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pumping voltage and PWM ratio is derived and a new digital control method to restrain the pumping voltage by changing PWM ratio is put forward. Because the capacitance is decreased effectively, the volume of controller is reduced and the performance to price ratio is improved. The results of computer simulation and experiment proved that this method is feasible and valid.
文摘A numerical model to simulate the bed degradation process in a straight alluvial channel with respect to time and distance is introduced. The simulation takes into account the effect of non uniformity of the bed material, and variations in the dimension of bed forms. The model predicts the changes in the grain size distribution with the time and space during degradation process. The numerical model proposes that the armoring process in degrading channels does not depend only on hydraulic characteristics of the flow but also on variation in the grain size distribution of sediments on the bed. The model was applied and compared with the results obtained from experiments conducted in 24 m recirculating flume for two sizes of sand; a good agreement was found between observed and calculated values.
文摘Sandy inlets are in a dynamic equilibrium between wave-driven littoral drift acting to close them,and tidal flows keeping them open.Their beds are in a continual state of suspension and deposition,so their bathymetry and even location are always in flux.Even so,a nearly linear relationship between an inlet’s cross-sectional flow area and the inshore tidal prism is maintained-except when major wind and/or runoff events act to close or widen an inlet.Inlet location can be stabilized by jetties,but dredging may still be necessary to maintain a navigable channel.Armoring with rock large enough to resist erosion can protect an inlet bed or river mouth from excessive storm flow erosion.Armoring can also be used as a stratagem to close inlets.
文摘This is a very timely review of body armour materials and systems since new test standards are currently being written, or reviewed, and new, innovative products released. Of greatest importance, however, is the recent evolution, and maturity, of the Ultra High Molecular Weight Polyethylene fibres enabling a completely new style of system to evolve e a stackable system of Hard Armour Plates. The science of body armour materials is quickly reviewed with emphasis upon current understanding of relevant energy-absorbing mechanisms in fibres, fabrics, polymeric laminates and ceramics. The trend in ongoing developments in ballistic fibres is then reviewed, analysed and future projections offered. Weaknesses in some of the ceramic grades are highlighted as is the value of using cladding materials to improve the robustness, and multi-strike performance, of Hard Armour Plates. Finally, with the drive for lighter, and therefore smaller, soft armour systems for military personnel the challenges for armour designers are reported, and the importance of the relative size of the Hard Armour Plate to the Soft Armour Insert is strongly emphasised.
基金This research is supported by the National Natural Science Foundation of China(No.U1730112).
文摘Chain damage is a new phenomenon that occurs when a reactive jet impacts and penetrates multispaced plates.The reactive jet produces mechanical perforations on the spaced plates by its kinetic energy(KE),and then results in unusual chain rupturing effects and excessive structural damage on the spaced plates by its deflagration reaction.In the present study,the chain damage behavior is initially demonstrated by experiments.The reactive liners,composed of 26 wt%Al and 74 wt%PTFE,are fabricated through a pressing and sintering process.Three reactive liner thicknesses of 0.08 CD,0.10 CD and 0.12 CD(charge diameter)are chosen to carry out the chain damage experiments.The results show a chain rupturing phenomenon caused by reactive jet.The constant reaction delay time and the different penetration velocities of reactive jets from liners with different thicknesses result in the variation of the deflagration position,which consequently determines the number of ruptured plates behind the armor.Then,the finite-element code AUTODYN-3D has been used to simulate the kinetic energy only-induced rupturing effects on plates,based on the mechanism of behind armor debris(BAD).The significant discrepancies between simulations and experiments indicate that one enhanced damage mechanism,the behind armor blast(BAB),has acted on the ruptured plates.Finally,a theoretical model is used to consider the BAB-induced enhancement,and the analysis shows that the rupturing area on aluminum plates depends strongly upon the KE only-induced pre-perforations,the mass of reactive materials,and the thickness of plates.
文摘Explosive Reactive Armor was originally modeled under the assumption that the plates in the cassettes were very thin.Hence their thickness could be ignored,and the thicknesses of the plates were considered only based on their areal mass density.In particular,it was assumed that the jet-plate interaction was controlled by the plates to jet-mass-flux ratio criteria for a specific jet velocity and diameter.In the present study,we extended this analysis,examining the effect of the variation of the mass-flux along the jet on the disruption effect by the two plates.In addition,we examined the thickness effect of the plates on the plate's effectiveness,replacing the steel plates by low-density materials like aluminum and polycarbonate.The mass-flux model was adjusted to account for the plate-thickness effect.It was found that increasing the thickness of the plate,keeping the areal weight unchanged,slightly increases the overall effectiveness of the cassette,in particular by the forward moving plate interacting with the center and the slow parts of the jet.
文摘AA5059 is one of the high strength armor grade aluminium alloy that finds its applications in the military vehicles due to the higher resistance against the armor piercing (AP) threats. This study aimed at finding the best suitable process among the fusion welding processes such as gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) by evaluating the tensile properties of AA5059 aluminium alloy joints. The fracture path was identified by mapping the low hardness distribution profile (LHDP) across the weld cross section under tensile loading. Optical and scanning electron microscopies were used to characterize the microstructural features of the welded joints at various zones. It is evident from the results that GTAW joints showed superior tensile properties compared to GMAW joints and this is primarily owing to the presence of finer grains in the weld metal zone (WMZ) and narrow heat-affected zone (HAZ). The lower heat input associated with the GTAW process effectively reduced the size of the WMZ and HAZ compared to GMAW process. Lower heat input of GTAW process results in faster cooling rate which hinders the grain growth and reduces the evaporation of magnesium in weld metal compared to GMAW joints. The fracture surface of GTAW joint consists of more dimples than GMAW joints which is an indication that the GTAW joint possess improved ductility than GMAW joint.
基金supported by the National Basic Scientific Research Project(Grant NO.JCKYS2019209C001)National Key Research and Development Program of China(Grant NO.2017YFC0822301&Grant NO.2018YFC0807206)National Natural Science Foundation of China(Grant NO.11772303)。
文摘Pressure wave plays an important role in the occurrence of behind armor blunt trauma(BABT),and ballistic gelatin is widely used as a surrogate of biological tissue in the research of BABT.Comparison of pressure wave in the gelatin behind armor for different rifle bullets is lacking.The aim of this study was to observe dynamic changes in pressure wave induced by ballistic blunt impact on the armored gelatin block and to compare the effects of bullet type on the parameters of the transient pressure wave.The gelatin blocks protected with National Institute of Justice(NIJ) class III bulletproof armor were shot by three types of rifle bullet with the same level of impact energy.The transient pressure signals at five locations were recorded with pressure sensors and three parameters(maximum pressure,maximum pressure impulse,and the duration of the first positive phase) were determined and discussed.The results indicated that the waveform and the twin peak of transient pressure wave were not related to the bullet type.However,the values of pressure wave's parameters were significantly affected by bullet type.Additionally,the attenuation of pressure amplitude followed the similar law for the three ammunitions.These findings may be helpful to get some insight in the BABT and improve the structure design of bullet.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51579146 and 51490674)Shanghai Municipal Natural Science Foundation(Grant No.15ZR1423500)Shanghai Rising-Star Program(Grant No.16QA1402300)
文摘This paper presents analytical and numerical models to predict the behavior of unbonded flexible risers under torsion.The analytical model takes local bending and torsion of tensile armor wires into consideration,and equilibrium equations of forces and displacements of layers are deduced.The numerical model includes lay angle,cross-sectional profiles of carcass,pressure armor layer and contact between layers.Abaqus/Explicit quasi-static simulation and mass scaling are adopted to avoid convergence problem and excessive computation time caused by geometric and contact nonlinearities.Results show that local bending and torsion of helical strips may have great influence on torsional stiffness,but stress related to bending and torsion is negligible;the presentation of anti-friction tapes may have great influence both on torsional stiffness and stress;hysteresis of torsion-twist relationship under cyclic loading is obtained by numerical model,which cannot be predicted by analytical model because of the ignorance of friction between layers.
基金the National Natural Science Foundation of China(Grant No.11872317)Science Challenge Project(Grant No.TZ2018001)the Fundamental Research Funds for the Central Universities(Grant No.3102019ZX001).
文摘By using split Hopkinson pressure bar, optical microscopy and electronic microscopy, we investigate the influence of initial microstructures on the adiabatic shear behavior of high-strength Ti-5Al-5V-5Mo-3Cr(Ti-5553) alloy with lamellar microstructure and bimodal microstructure. Lamellar alloy tends to form adiabatic shearing band(ASB) at low compression strain, while bimodal alloy is considerably ASBresistant. Comparing with the initial microstructure of Ti-5553 alloy, we find that the microstructure of the ASB changes dramatically. Adiabatic shear of lamellar Ti-5553 alloy not only results in the formation of recrystallized β nano-grains within the ASB, but also leads to the chemical redistribution of the alloying elements such as Al, V, Cr and Mo. As a result, the alloying elements distribute evenly in the ASB.In contrast, the dramatic adiabatic shear of bimodal alloy might give rise to the complete lamination of the globular primary a grain and the equiaxial prior β grain, which is accompanied by the dynamic recrystallization of a lamellae and β lamellae. As a result, ASB of bimodal alloy is composed of a/β nanomultilayers. Chemical redistribution does not occur in ASB of bimodal alloy. Bimodal Ti-5553 alloy should be a promising candidate for high performance armors with high mass efficiency due to the processes high dynamic flow stress and excellent ASB-resistance.
基金support from the National Natural Science Foundation of China(51920105004,52102223)the Basic and Applied Basic Research Fund Project of Guangdong Province(2020A1515110401)。
文摘Tin selenide(SnSe)is considered as a potential anode for sodium-ion batteries(SIBs)owing to its high theoretical specific capacity.Unfortunately,it suffers from drastic volume expansion/contraction during sodium ions insertion/extraction,resulting in poor cycling stability.Herein,a pomegranate-inspired porous carbon shell wrapped heterogeneous SnSe/ZnSe composite(SnSe/ZnSe@C)is exquisitely designed and fabricated through electrostatic spraying followed by high-temperature selenization.The polyacrylonitrile-derived carbon shell acts as an adhesive to link the porous cubic SnSe/ZnSe and form highly interconnected microcircuits to improve the electron/ion transfer efficiency and inhibit the bulk volume change of internal metallic selenide nanoparticles and polyselenides dissolution during repeated cycling.Moreover,the abundant heterostructure interface of SnSe/ZnSe further significantly accelerates the electrons/ions transport.As a result,the as-prepared SnSe/ZnSe@C electrode exhibits a high specific capacity(508.3 m Ah g^(-1)at 0.05 A g^(-1)),excellent rate performance(177.8 m Ah g^(-1)at 10.0 A g^(-1)),and remarkable cycling stability(195.9 m Ah g^(-1)after 10,000 cycles at 5.0 A g^(-1)).Furthermore,in-situ Xray diffraction(XRD)/Raman,ex-situ transmission electron microscopy,and kinetic analysis clearly reveal a four-step electrochemical reaction process and battery-capacitor dual-mode sodium storage mechanism.This work provides a new perspective for developing commercial SIBs anode materials with high capacity and long lifespan.
基金Authors thanks Temasek Laboratories@Nanyang Technological University(TL@NTU)for the financial support through the project number TL9013103084-02.
文摘With increasing ballistic threat levels,there is ever more demand on developing ceramic armor designs with improved performance.This paper presents finite element simulations that investigate the performance of silicon carbide ceramic with steel 4340 backing material and titanium alloy,graphite as buffer layers when subjected to normal and oblique impacts by a tungsten alloy long rod projectile(LRP).Depth of penetration from experimental measurements is compared with simulations to confirm the validity of constitutive,failure model parameters.Titanium alloy cover plate and graphite interface weak layer laterally spread the impact shock away from the SiC tile and reduces the amplification of the stress accumulation at the front surface of the SiC tile.The dwelling time increases before it penetrates into ceramic armor.Further,using AUTODYN®numerical simulations detailed parametric study is carried out to identify the minimum areal density armor for a given ballistic limit velocity.The equivalent protection factor for the bi-layer armor is a simple function of the cosine of the angle of impact.
文摘Principles of dimensional analysis are applied in a new interpretation of penetration of ceramic targets subjected to hypervelocity impact. The analysis results in a power series representation – in terms of inverse velocity – of normalized depth of penetration that reduces to the hydrodynamic solution at high impact velocities. Specifically considered are test data from four literature sources involving penetration of confined thick ceramic targets by tungsten long rod projectiles. The ceramics are AD-995 alumina, aluminum nitride, silicon carbide, and boron carbide.Test data can be accurately represented by the linear form of the power series, whereby the same value of a single fitting parameter applies remarkably well for all four ceramics. Comparison of the present model with others in the literature(e.g., Tate's theory) demonstrates a target resistance stress that depends on impact velocity, linearly in the limiting case. Comparison of the present analysis with recent research involving penetration of thin ceramic tiles at lower typical impact velocities confirms the importance of target properties related to fracture and shear strength at the Hugoniot Elastic Limit(HEL) only in the latter. In contrast, in the former(i.e., hypervelocity and thick target) experiments, the current analysis demonstrates dominant dependence of penetration depth only by target mass density. Such comparisons suggest transitions from microstructure-controlled to density-controlled penetration resistance with increasing impact velocity and ceramic target thickness.Production and hosting by Elsevier B.V. on behalf of China Ordnance Society.