The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promisi...The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promising in terms of its economical, energy-saving, and eco-friendly advantages. However, this technique has not been used in industry for separating aromatic/aliphatic mixtures yet. One of the main reasons is that the separation performance of existed pervaporation membranes is unsatisfactory. Membrane material is an important factor that affects the separation performance. This review provides an overview on the advances in studying membrane materials for the pervaporation separation of aromatic/aliphatic mixtures over the past decade. Explored pristine polymers and their hybrid materials(as hybrid membranes) are summarized to highlight their nature and separation performance. We anticipate that this review could provide some guidance in the development of new materials for the aromatic/aliphatic pervaporation separation.展开更多
Methanol to aromatics produces multiple products,resulting in a limited selectivity of xylene.Aromatics upgrading is an effective way to produce more valuable xylene product,and different feed ratios generate discrepa...Methanol to aromatics produces multiple products,resulting in a limited selectivity of xylene.Aromatics upgrading is an effective way to produce more valuable xylene product,and different feed ratios generate discrepant product distributions.This work integrates the aromatics separation with toluene disproportionation,transalkylation of toluene and trimethylbenzene,and isomerization of xylene and trimethylbenzene.Exergy and exergoeconomic analyses are conducted to give insights in the splitting ratios of benzene,toluene and heavy aromatics for aromatics upgrading.First,a detailed simulation model is developed in Aspen HYSYS.Then,300 splitting ratio sets of benzene and toluene for conversion are studied to investigate the process performances.The results indicate that there are different preferences for the splitting ratios of benzene and toluene in terms of exergy and exergoeconomic performances.The process generates lower total exergy destruction when the splitting ratio of toluene varies between 0.07 and 0.18,and that of benzene fluctuates between 0.55 and 0.6.Nevertheless,the process presents lower total product unit cost with the splitting ratio of toluene less than 0.18 and that of benzene fluctuating between 0.44 and 0.89.Besides,it is found that distillation is the biggest contributor to the total exergy destruction,accounting for 94.97%.展开更多
The RAX series paraxylene (PX) adsorbents RAX-2000A and RAX-3000, are developed by the Sinopec Re- search Institute of Petroleum Processing (RIPP) and manufactured by the Sinopec Catalyst Company. Performance test...The RAX series paraxylene (PX) adsorbents RAX-2000A and RAX-3000, are developed by the Sinopec Re- search Institute of Petroleum Processing (RIPP) and manufactured by the Sinopec Catalyst Company. Performance test of RAX-2000A showed that the average purity of the PX product reached 99.81%, with an average PX yield of 98.6% per pass. The new generation of PX adsorbents, RAX-3000 not only retains most advantages of the adsorbent RAX-2000A, but also has higher selective adsorption capacity by at least 8%. The actual unit production capability of the adsorbent RAX- 3000 was increased by about 18%. The RAX series PX adsorbents exhibited good adaptability to unfavorable feedstock containing high ethyl benzene (EB) fraction besides their better mechanical strength. Preliminary test results indicated that compared to the adsorbent RAX-2000A, the A/Fa and D/F relating to the adsorbent RAX-3000 were notably decreased due to the hi^her selective adsorotion canacitv of the adsorbent RAX-3000.展开更多
Novel porous aromatic frameworks(PAF-53 and PAF-54) have been obtained by the polymerization of amino compound(p-phenylenediamine and melamine) and cyanuric chloride. They display a certain amount of CO2 adsorptio...Novel porous aromatic frameworks(PAF-53 and PAF-54) have been obtained by the polymerization of amino compound(p-phenylenediamine and melamine) and cyanuric chloride. They display a certain amount of CO2 adsorption capacity and highly selective separation of CO2/CH4 and CO2/N2 as 18.1 and83 by Henry Law respectively. They may be applied as ideal adsorbents to separate and capture CO2.展开更多
A novel porous aromatic framework, PAF-8, derived from tetraphenylsilane as basic building unit, was successfully synthesized via Friedel-Crafts alkylation reaction. This PAF material had high thermal stability as wel...A novel porous aromatic framework, PAF-8, derived from tetraphenylsilane as basic building unit, was successfully synthesized via Friedel-Crafts alkylation reaction. This PAF material had high thermal stability as well as high surface area (785 m^2 g^-1) calculated from the Brunauer-Emmett-Teller (BET) model. Meanwhile, PAF-8 possessed high performances in gas sorption and especially for CO2 separation.展开更多
In this study,graphene oxide was covalently immobilized on silica-coated magnetite and then modified with 2-phenylethylamine to give a nanocomposite of type Fe3O4@SiO2@GO-PEA that can be applied to the magnetic solid-...In this study,graphene oxide was covalently immobilized on silica-coated magnetite and then modified with 2-phenylethylamine to give a nanocomposite of type Fe3O4@SiO2@GO-PEA that can be applied to the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons(PAHs) from water samples.The resulting microspheres(Fe3O4@SiO2@GO-PEA) were characterized by Fourier transform-infrared spectroscopy(FT-IR),scanning electron microscopy(SEM),CHNS elemental analysis,and vibrating sample magnetometry(VSM) techniques.The adsorbent possesses the magnetic properties of Fe3O4 nanoparticles that allow them easily to be separated by an external magnetic field.They also have the high specific surface area of graphene oxide which improves adsorption capacity.Desorption conditions,extraction time,amount of adsorbent,salt concentration,and pH were investigated and optimized.Following desorption,the PAHs were quantified by gas chromatography with flame ionization detection(GC-FID).The limits of detection(at an S/N ratio of 3) were achieved from 0.005 to0.1 μg/L with regression coefficients(R2) higher than 0.9954.The relative standard deviations(RSDs) were below 5.8%(intraday) and 6.2%(inter-day),respectively.The method was successfully applied to the analysis of PAHs in environmental water samples where it showed recoveries in the range between 71.7%and 106.7%(with RSDs of 1.6%to 8.4%,for n = 3).The results indicated that the Fe3O4@SiO2@GO-PEA microspheres had a great promise to extraction of PAHs from different water samples.展开更多
The application of the non equilibrium stage model to the multicomponent, non ideal liquid liquid extraction process is described in this paper. Pilot plant experiments and a commercial process of aromatic separati...The application of the non equilibrium stage model to the multicomponent, non ideal liquid liquid extraction process is described in this paper. Pilot plant experiments and a commercial process of aromatic separation by sulfolane in sieve tray extraction columns were chosen as examples to show the advantages and benefits of the non equilibrium stage model over the conventional model.展开更多
基金Supported by the National Natural Science Foundation of China(21406006,21576003)the Science and Technology Program of Beijing Municipal Education Commission(KM201510005010)+1 种基金the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(CIT&TCD20150309)the China Postdoctoral Science Foundation funded project(2015M580954)
文摘The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promising in terms of its economical, energy-saving, and eco-friendly advantages. However, this technique has not been used in industry for separating aromatic/aliphatic mixtures yet. One of the main reasons is that the separation performance of existed pervaporation membranes is unsatisfactory. Membrane material is an important factor that affects the separation performance. This review provides an overview on the advances in studying membrane materials for the pervaporation separation of aromatic/aliphatic mixtures over the past decade. Explored pristine polymers and their hybrid materials(as hybrid membranes) are summarized to highlight their nature and separation performance. We anticipate that this review could provide some guidance in the development of new materials for the aromatic/aliphatic pervaporation separation.
基金the National Natural Science Foundation of China(Grant No.21736008)the National Key Research and Development Program of China(Grant No.2018YFB0604803).
文摘Methanol to aromatics produces multiple products,resulting in a limited selectivity of xylene.Aromatics upgrading is an effective way to produce more valuable xylene product,and different feed ratios generate discrepant product distributions.This work integrates the aromatics separation with toluene disproportionation,transalkylation of toluene and trimethylbenzene,and isomerization of xylene and trimethylbenzene.Exergy and exergoeconomic analyses are conducted to give insights in the splitting ratios of benzene,toluene and heavy aromatics for aromatics upgrading.First,a detailed simulation model is developed in Aspen HYSYS.Then,300 splitting ratio sets of benzene and toluene for conversion are studied to investigate the process performances.The results indicate that there are different preferences for the splitting ratios of benzene and toluene in terms of exergy and exergoeconomic performances.The process generates lower total exergy destruction when the splitting ratio of toluene varies between 0.07 and 0.18,and that of benzene fluctuates between 0.55 and 0.6.Nevertheless,the process presents lower total product unit cost with the splitting ratio of toluene less than 0.18 and that of benzene fluctuating between 0.44 and 0.89.Besides,it is found that distillation is the biggest contributor to the total exergy destruction,accounting for 94.97%.
文摘The RAX series paraxylene (PX) adsorbents RAX-2000A and RAX-3000, are developed by the Sinopec Re- search Institute of Petroleum Processing (RIPP) and manufactured by the Sinopec Catalyst Company. Performance test of RAX-2000A showed that the average purity of the PX product reached 99.81%, with an average PX yield of 98.6% per pass. The new generation of PX adsorbents, RAX-3000 not only retains most advantages of the adsorbent RAX-2000A, but also has higher selective adsorption capacity by at least 8%. The actual unit production capability of the adsorbent RAX- 3000 was increased by about 18%. The RAX series PX adsorbents exhibited good adaptability to unfavorable feedstock containing high ethyl benzene (EB) fraction besides their better mechanical strength. Preliminary test results indicated that compared to the adsorbent RAX-2000A, the A/Fa and D/F relating to the adsorbent RAX-3000 were notably decreased due to the hi^her selective adsorotion canacitv of the adsorbent RAX-3000.
基金support of the National Natural Science Foundation of China(No.0831002)Major International (Regional) Joint Research Project(No.21120102034)
文摘Novel porous aromatic frameworks(PAF-53 and PAF-54) have been obtained by the polymerization of amino compound(p-phenylenediamine and melamine) and cyanuric chloride. They display a certain amount of CO2 adsorption capacity and highly selective separation of CO2/CH4 and CO2/N2 as 18.1 and83 by Henry Law respectively. They may be applied as ideal adsorbents to separate and capture CO2.
基金the financial support of National Basic Research Program of China(973 Program,Nos.2012CB821700 and 2014CB931804)Major International(Regional) Joint Research Project of NSFC(No.21120102034)NSFC Project(Nos. 21531003 and 21503038)
文摘A novel porous aromatic framework, PAF-8, derived from tetraphenylsilane as basic building unit, was successfully synthesized via Friedel-Crafts alkylation reaction. This PAF material had high thermal stability as well as high surface area (785 m^2 g^-1) calculated from the Brunauer-Emmett-Teller (BET) model. Meanwhile, PAF-8 possessed high performances in gas sorption and especially for CO2 separation.
文摘In this study,graphene oxide was covalently immobilized on silica-coated magnetite and then modified with 2-phenylethylamine to give a nanocomposite of type Fe3O4@SiO2@GO-PEA that can be applied to the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons(PAHs) from water samples.The resulting microspheres(Fe3O4@SiO2@GO-PEA) were characterized by Fourier transform-infrared spectroscopy(FT-IR),scanning electron microscopy(SEM),CHNS elemental analysis,and vibrating sample magnetometry(VSM) techniques.The adsorbent possesses the magnetic properties of Fe3O4 nanoparticles that allow them easily to be separated by an external magnetic field.They also have the high specific surface area of graphene oxide which improves adsorption capacity.Desorption conditions,extraction time,amount of adsorbent,salt concentration,and pH were investigated and optimized.Following desorption,the PAHs were quantified by gas chromatography with flame ionization detection(GC-FID).The limits of detection(at an S/N ratio of 3) were achieved from 0.005 to0.1 μg/L with regression coefficients(R2) higher than 0.9954.The relative standard deviations(RSDs) were below 5.8%(intraday) and 6.2%(inter-day),respectively.The method was successfully applied to the analysis of PAHs in environmental water samples where it showed recoveries in the range between 71.7%and 106.7%(with RSDs of 1.6%to 8.4%,for n = 3).The results indicated that the Fe3O4@SiO2@GO-PEA microspheres had a great promise to extraction of PAHs from different water samples.
文摘The application of the non equilibrium stage model to the multicomponent, non ideal liquid liquid extraction process is described in this paper. Pilot plant experiments and a commercial process of aromatic separation by sulfolane in sieve tray extraction columns were chosen as examples to show the advantages and benefits of the non equilibrium stage model over the conventional model.