The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing me...The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures.展开更多
The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and...The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and their performances in the separation of 1,2,3,4-tetrahydronaphthalene(tetralin)/dodecane and tetralin/decalin systems were studied.Among these ionic liquids,1-ethyl-3-methylimidazolium tetrachloroferrate([EMIM][FeCl_(4)])with the highest selectivity was used as the extractant.Density functional theory calculations showed that[EMIM][FeCl_(4)]interacted more strongly with tetralin than with dodecane and decalin.Energy decomposition analysis of[EMIM][FeCl_(4)]-tetralin indicated that electrostatics and dispersion played essential roles,and induction cannot be neglected.The van der Waals forces was a main effect in[EMIM][FeCl_(4)]-tetralin by independent gradient model analysis.The tetralin distribution coefficient and selectivity were 0.8 and 110,respectively,with 10%(mol)tetralin in the initial tetralin/dodecane system,and 0.67 and 19.5,respectively,with 10%(mol)tetralin in the initial tetralin/decalin system.The selectivity increased with decreasing alkyl chain length of the extractant.The influence of the extraction temperature,extractant dosage,and initial concentrations of the system components on the separation performance were studied.Recycling experiments showed that the regenerated[EMIM][FeCl_(4)]could be used repeatedly.展开更多
The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promisi...The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promising in terms of its economical, energy-saving, and eco-friendly advantages. However, this technique has not been used in industry for separating aromatic/aliphatic mixtures yet. One of the main reasons is that the separation performance of existed pervaporation membranes is unsatisfactory. Membrane material is an important factor that affects the separation performance. This review provides an overview on the advances in studying membrane materials for the pervaporation separation of aromatic/aliphatic mixtures over the past decade. Explored pristine polymers and their hybrid materials(as hybrid membranes) are summarized to highlight their nature and separation performance. We anticipate that this review could provide some guidance in the development of new materials for the aromatic/aliphatic pervaporation separation.展开更多
The effects of the structure of typical cations and anions of ionic liquids on the separation of benzene and toluene from aromatic/paraffin mixtures were studied. The .results showed that the corresponding separation ...The effects of the structure of typical cations and anions of ionic liquids on the separation of benzene and toluene from aromatic/paraffin mixtures were studied. The .results showed that the corresponding separation factors were considerably larger than those of the traditional solvents (Benzene+Hexane+sulfolane), and that the ionic liquids could be used as novel solvents for the separation of aromatics from hydrocarbon mixtures. The key parameters governing the ability of ionic liquids for separating aromatics from hydrocarbon sources were investigated. It was found that the effectiveness of the ionic liquids, based on the same anion, changed in the cation order of [BIqu]^+〈 [BPy]^+〈 [BMIM]^+. The selectivity of the ionic liquid toward aromatics decreased apparently with the increasing length of the substituted alkyl chain of its cationic head ring. The separation factors, based on the same cation, changed in the anion order of [Tf2N]^-〈[PF6]^-〈[BF4]^-〈[C2H5SO4]^-. The solubilities of the aromatics were greater in the ionic liquids based on the former three anions than that in the ionic liquids involving [C2H5SO4]^-.展开更多
In situ melt polycondensation was proposed to prepare biodegradable aliphatic-aromatic copolyesters/nano-SiO2 hybrids based on terephthalic acid (TPA), poly(L-lactic acid) oligomer (OLLA), 1,4-butanediol (BDO)...In situ melt polycondensation was proposed to prepare biodegradable aliphatic-aromatic copolyesters/nano-SiO2 hybrids based on terephthalic acid (TPA), poly(L-lactic acid) oligomer (OLLA), 1,4-butanediol (BDO) and nano-SiO2. TEM and FT-IR characterizations confirmed that TPA, OLLA and BDO copolymerized to obtain biodegradable copolyesters, poly(butylene terepbthalate-co-lactate) (PBTL), and the abundant hydroxyl groups on the surface of nano-SiO2 provided potential sites for in situ grafting with the simultaneous resulted PBTL. The nano-SiO2 particles were chemically wrapped with PBTL to form PBTL/nano- SiO2 hybrids. Due to the good dispersion and interfacial adhesion of nano-SiO2 particles with the copolyester matrix, the tensile strength and the Young's modulus increased from 5.4 and 5.6 MPa for neat PBTL to 16 and 390 MPa for PBTL/nano-SiO2 hybrids with 5 wt.% nano-SiO2, respectively. The mechanical properties of PBTL/nano-SiO2 hybrids were substantially improved.展开更多
Biodegradable aliphatic/aromatic copolyesters, poly(butylene terephthalate-co-lactate) (PBTL) were prepared via direct melt polycondensation of terephthalic acid (TPA), 1,4-butanediol (BDO) and poly(L-lactic ...Biodegradable aliphatic/aromatic copolyesters, poly(butylene terephthalate-co-lactate) (PBTL) were prepared via direct melt polycondensation of terephthalic acid (TPA), 1,4-butanediol (BDO) and poly(L-lactic acid) oligomer (OLLA). The effects of polymerization time and temperature, as well as aliphatic/aromatic moiety ratio on the physical and thermal properties were investigated. The largest molecular weight of the copolyesters was up to 64100 with molecular weight distribution index of 2.09 when the polycondensation was carried out at 230℃ for 6 h. DSC, XRD, DMA and TGA analysis clearly indicated that the degree of crystallinity, glass-transition temperature, melting point, decomposition temperature, tensile strength, elongation and Young's modulus were influenced by the ratio between TPA and OLLA in the final copolyesters. Hydrolytic degradation results demonstrated that the incorporation of biodegradable lactate moieties into the aromatic polyester could efficiently improve hydrolytic degradability of the copolymer even though it still had many aromatic units in the main chains.展开更多
A series of biodegradable aliphatic-aromatic copolyesters, poly(butylene terephthalate-co-butylene adipate-co- ethylene terephthalate-co-ethylene adipate) (PBATE), were synthesized from terephthalic acid (PTA), adipic...A series of biodegradable aliphatic-aromatic copolyesters, poly(butylene terephthalate-co-butylene adipate-co- ethylene terephthalate-co-ethylene adipate) (PBATE), were synthesized from terephthalic acid (PTA), adipic acid (AA), 1,4-butanediol (BG) and ethylene glycol (EG) through direct esterification and polycondensation. The sequence structure and crystallinity of the copolyester were investigated by 1H NMR spectroscopy and the wide-angle X-ray diffractometry (WAXD). The analytical results showed that the PBATE copolyester was a random copolymer and the composition of PBATE copolyester was almost consistent with the feed molar ratios. The crystal structure of PBATE copolyester belonged to the triclinic crystalline system; The variation in melting point of the synthesized PBATE copolyester agreed well with the estimation obtained by the Flory equation and was applicable to the random copolymer.展开更多
Polycyclic aromatic hydrocarbons(PAHs)play an important role in the industry,and the development of new materials for the selective separation of PAHs is of great significance.In this work,we report a hexahedral metal...Polycyclic aromatic hydrocarbons(PAHs)play an important role in the industry,and the development of new materials for the selective separation of PAHs is of great significance.In this work,we report a hexahedral metal-organic cage with low symmetry by subcomponent self-assembly.In this cage,the eight ZnII centers adopt an interestin∧∧/△△△△△△or∧∧∧∧∧∧/△△configuration.This cage with a cavity volume of 520˚A3 can bind anthracene,phenanthrene,and pyrene to form 1:1 host-guest complexes,while the bigger triphenylene,chrysene,perylene,and coronene cannot be encapsulated.The binding constant Ka of pyrene is about 1.110×10^(3)(mol/L)^(−1),which is more than an order of magnitude larger than that of anthracene and phenanthrene(111(mol/L)^(−1),277(mol/L)^(−1),respectively).X-ray structure studies reveal that the pyrene is located in the cavity and stabilized by multiple C–H…πinteractions.After separation from a mixture of PAHs,pyrene with>96.1%purity can be obtained.This work provides a useful method for the first time for the selective separation of pyrene from PAHs mixture by utilizing a metal-organic cage as the material,making it a useful tool for purifying and separating specific compounds from complex mixtures.展开更多
An efficient and environment-friendly method for simultaneous determination of 13 typical derivatives of polycyclic aromatic hydrocarbon(PAH)in petroleum-polluted soil with nitro-,oxy-and alkylfunctional group was dev...An efficient and environment-friendly method for simultaneous determination of 13 typical derivatives of polycyclic aromatic hydrocarbon(PAH)in petroleum-polluted soil with nitro-,oxy-and alkylfunctional group was developed using supercritical fluid extraction(SFE)followed by ultra-high performance supercritical fluid chromatography(UHPSFC).Parameters of UHPSFC,including type of stationary phase and mobile phase modifiers,gradient elution process,backpressure,column temperature,and the flow rate of mobile phase,were systematically optimized,achieving a fast separation within4.2 min.Limits of detection(LOD)were 0.005-0.1μg mL^(-1)or 0.1-2.0 ng g^(-1),respectively,with a good repeatability(RSD<5.0%).Before UHPSFC-PDA analysis,the PAH-derivatives in soil samples were effectively enriched in 15.0 min using SFE with an online carbon nanotubes(CNTs)collection trap.The soil samples were analyzed by the proposed method and the results were verified by GC-MS.Thus,SFE equipped with an online CNTs trap followed by UHPSFC-PDA analysis,which only consumed about2.0 mL organic solvent for a whole run,has been demonstrated to be an efficient way for screening and quantitative analysis of trace-level PAH-derivatives in soil samples.展开更多
Six aromatic polyesters were prepared for gas separation membranes, and their permeation properties for hydrogen, oxygen, nitrogen, carbon dioxide, and methane were measured at 30 degrees C and 1 atmosphere by low pre...Six aromatic polyesters were prepared for gas separation membranes, and their permeation properties for hydrogen, oxygen, nitrogen, carbon dioxide, and methane were measured at 30 degrees C and 1 atmosphere by low pressure manometric method. The correlation between the gas transport behavior and molecular structure of aromatic polyester membrane is discussed. These data are interpreted qualitatively in terms of the calculated packing density, gas-polymer interaction, concentration of aryl bromine on backbone, and effect of silane group on main chain of polymer.展开更多
Methanol to aromatics produces multiple products,resulting in a limited selectivity of xylene.Aromatics upgrading is an effective way to produce more valuable xylene product,and different feed ratios generate discrepa...Methanol to aromatics produces multiple products,resulting in a limited selectivity of xylene.Aromatics upgrading is an effective way to produce more valuable xylene product,and different feed ratios generate discrepant product distributions.This work integrates the aromatics separation with toluene disproportionation,transalkylation of toluene and trimethylbenzene,and isomerization of xylene and trimethylbenzene.Exergy and exergoeconomic analyses are conducted to give insights in the splitting ratios of benzene,toluene and heavy aromatics for aromatics upgrading.First,a detailed simulation model is developed in Aspen HYSYS.Then,300 splitting ratio sets of benzene and toluene for conversion are studied to investigate the process performances.The results indicate that there are different preferences for the splitting ratios of benzene and toluene in terms of exergy and exergoeconomic performances.The process generates lower total exergy destruction when the splitting ratio of toluene varies between 0.07 and 0.18,and that of benzene fluctuates between 0.55 and 0.6.Nevertheless,the process presents lower total product unit cost with the splitting ratio of toluene less than 0.18 and that of benzene fluctuating between 0.44 and 0.89.Besides,it is found that distillation is the biggest contributor to the total exergy destruction,accounting for 94.97%.展开更多
Our previous research showed that aliphatic amines were put in order of high reactivity as “ethylamine > ammonia > t-butylamine > diethylamine” on the aromatic nucleophilic substitution of 1-dimetylamino-2,...Our previous research showed that aliphatic amines were put in order of high reactivity as “ethylamine > ammonia > t-butylamine > diethylamine” on the aromatic nucleophilic substitution of 1-dimetylamino-2,4-bis(trifluoroacetyl)-naphthalene 1 in acetonitrile. The DFT calculation study (B3LYP/6-31G* with solvation model) for the reactions of 1 with above four amines rationally explained the difference of each amines reactivity based on the energies of their Meisenheimer complexes 3 which are assumed to formed as the reaction intermediates in the course of the reaction giving the corresponding N-N exchange products 2. Intramolecular hydrogen bond between amino proton in 1-amino group and carbonyl oxygen in 2-trifluoroacetyl group stabilizes Meisenheimer complexes 3 effectively, and accelerates the substitution reaction from 1 to 2. Our calculation results also predicted that the above order of amines is also true if less polar toluene is used as a solvent instead of acetonitrile even though more enhanced conditions are required.展开更多
基金financially supported by the National Natural Science Foundation of China (22178008, 22125801)Petrochina (2022DJ6004)。
文摘The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures.
基金supported by the National Natural Science Foundation of China(22125802,22078010).
文摘The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and their performances in the separation of 1,2,3,4-tetrahydronaphthalene(tetralin)/dodecane and tetralin/decalin systems were studied.Among these ionic liquids,1-ethyl-3-methylimidazolium tetrachloroferrate([EMIM][FeCl_(4)])with the highest selectivity was used as the extractant.Density functional theory calculations showed that[EMIM][FeCl_(4)]interacted more strongly with tetralin than with dodecane and decalin.Energy decomposition analysis of[EMIM][FeCl_(4)]-tetralin indicated that electrostatics and dispersion played essential roles,and induction cannot be neglected.The van der Waals forces was a main effect in[EMIM][FeCl_(4)]-tetralin by independent gradient model analysis.The tetralin distribution coefficient and selectivity were 0.8 and 110,respectively,with 10%(mol)tetralin in the initial tetralin/dodecane system,and 0.67 and 19.5,respectively,with 10%(mol)tetralin in the initial tetralin/decalin system.The selectivity increased with decreasing alkyl chain length of the extractant.The influence of the extraction temperature,extractant dosage,and initial concentrations of the system components on the separation performance were studied.Recycling experiments showed that the regenerated[EMIM][FeCl_(4)]could be used repeatedly.
基金Supported by the National Natural Science Foundation of China(21406006,21576003)the Science and Technology Program of Beijing Municipal Education Commission(KM201510005010)+1 种基金the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(CIT&TCD20150309)the China Postdoctoral Science Foundation funded project(2015M580954)
文摘The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promising in terms of its economical, energy-saving, and eco-friendly advantages. However, this technique has not been used in industry for separating aromatic/aliphatic mixtures yet. One of the main reasons is that the separation performance of existed pervaporation membranes is unsatisfactory. Membrane material is an important factor that affects the separation performance. This review provides an overview on the advances in studying membrane materials for the pervaporation separation of aromatic/aliphatic mixtures over the past decade. Explored pristine polymers and their hybrid materials(as hybrid membranes) are summarized to highlight their nature and separation performance. We anticipate that this review could provide some guidance in the development of new materials for the aromatic/aliphatic pervaporation separation.
基金The authors thank the National Natural Science Foundation of China(20276037)the CNPC Innovation Foundation(03E7016)for financial support.
文摘The effects of the structure of typical cations and anions of ionic liquids on the separation of benzene and toluene from aromatic/paraffin mixtures were studied. The .results showed that the corresponding separation factors were considerably larger than those of the traditional solvents (Benzene+Hexane+sulfolane), and that the ionic liquids could be used as novel solvents for the separation of aromatics from hydrocarbon mixtures. The key parameters governing the ability of ionic liquids for separating aromatics from hydrocarbon sources were investigated. It was found that the effectiveness of the ionic liquids, based on the same anion, changed in the cation order of [BIqu]^+〈 [BPy]^+〈 [BMIM]^+. The selectivity of the ionic liquid toward aromatics decreased apparently with the increasing length of the substituted alkyl chain of its cationic head ring. The separation factors, based on the same cation, changed in the anion order of [Tf2N]^-〈[PF6]^-〈[BF4]^-〈[C2H5SO4]^-. The solubilities of the aromatics were greater in the ionic liquids based on the former three anions than that in the ionic liquids involving [C2H5SO4]^-.
基金support from the Natural Science Foundation of Ningbo(No.2007A610030)Science and Technology Department of Zhejiang Province(No.2008C11092-2)
文摘In situ melt polycondensation was proposed to prepare biodegradable aliphatic-aromatic copolyesters/nano-SiO2 hybrids based on terephthalic acid (TPA), poly(L-lactic acid) oligomer (OLLA), 1,4-butanediol (BDO) and nano-SiO2. TEM and FT-IR characterizations confirmed that TPA, OLLA and BDO copolymerized to obtain biodegradable copolyesters, poly(butylene terepbthalate-co-lactate) (PBTL), and the abundant hydroxyl groups on the surface of nano-SiO2 provided potential sites for in situ grafting with the simultaneous resulted PBTL. The nano-SiO2 particles were chemically wrapped with PBTL to form PBTL/nano- SiO2 hybrids. Due to the good dispersion and interfacial adhesion of nano-SiO2 particles with the copolyester matrix, the tensile strength and the Young's modulus increased from 5.4 and 5.6 MPa for neat PBTL to 16 and 390 MPa for PBTL/nano-SiO2 hybrids with 5 wt.% nano-SiO2, respectively. The mechanical properties of PBTL/nano-SiO2 hybrids were substantially improved.
基金supported by the Natural Science Foundation of Ningbo(No.2007A610030)Scientific Special Fund of Zhejiang Province(No.2008C11092-2)
文摘Biodegradable aliphatic/aromatic copolyesters, poly(butylene terephthalate-co-lactate) (PBTL) were prepared via direct melt polycondensation of terephthalic acid (TPA), 1,4-butanediol (BDO) and poly(L-lactic acid) oligomer (OLLA). The effects of polymerization time and temperature, as well as aliphatic/aromatic moiety ratio on the physical and thermal properties were investigated. The largest molecular weight of the copolyesters was up to 64100 with molecular weight distribution index of 2.09 when the polycondensation was carried out at 230℃ for 6 h. DSC, XRD, DMA and TGA analysis clearly indicated that the degree of crystallinity, glass-transition temperature, melting point, decomposition temperature, tensile strength, elongation and Young's modulus were influenced by the ratio between TPA and OLLA in the final copolyesters. Hydrolytic degradation results demonstrated that the incorporation of biodegradable lactate moieties into the aromatic polyester could efficiently improve hydrolytic degradability of the copolymer even though it still had many aromatic units in the main chains.
文摘A series of biodegradable aliphatic-aromatic copolyesters, poly(butylene terephthalate-co-butylene adipate-co- ethylene terephthalate-co-ethylene adipate) (PBATE), were synthesized from terephthalic acid (PTA), adipic acid (AA), 1,4-butanediol (BG) and ethylene glycol (EG) through direct esterification and polycondensation. The sequence structure and crystallinity of the copolyester were investigated by 1H NMR spectroscopy and the wide-angle X-ray diffractometry (WAXD). The analytical results showed that the PBATE copolyester was a random copolymer and the composition of PBATE copolyester was almost consistent with the feed molar ratios. The crystal structure of PBATE copolyester belonged to the triclinic crystalline system; The variation in melting point of the synthesized PBATE copolyester agreed well with the estimation obtained by the Flory equation and was applicable to the random copolymer.
基金the National Natural Science Foundation of China(Nos.22171106,21731002,21975104,21871172 and 22201101)the Guangdong Major Project of Basic and Applied Research(No.2019B030302009)+3 种基金Guangdong Natural Science Foundation(No.2022A1515011937)the Guangzhou Science and Technology Program(No.202002030411)the Fundamental Research Funds for the Central Universities(No.21622103)the China Postdoctoral Science Foundation(No.2022M711327),and Jinan University.
文摘Polycyclic aromatic hydrocarbons(PAHs)play an important role in the industry,and the development of new materials for the selective separation of PAHs is of great significance.In this work,we report a hexahedral metal-organic cage with low symmetry by subcomponent self-assembly.In this cage,the eight ZnII centers adopt an interestin∧∧/△△△△△△or∧∧∧∧∧∧/△△configuration.This cage with a cavity volume of 520˚A3 can bind anthracene,phenanthrene,and pyrene to form 1:1 host-guest complexes,while the bigger triphenylene,chrysene,perylene,and coronene cannot be encapsulated.The binding constant Ka of pyrene is about 1.110×10^(3)(mol/L)^(−1),which is more than an order of magnitude larger than that of anthracene and phenanthrene(111(mol/L)^(−1),277(mol/L)^(−1),respectively).X-ray structure studies reveal that the pyrene is located in the cavity and stabilized by multiple C–H…πinteractions.After separation from a mixture of PAHs,pyrene with>96.1%purity can be obtained.This work provides a useful method for the first time for the selective separation of pyrene from PAHs mixture by utilizing a metal-organic cage as the material,making it a useful tool for purifying and separating specific compounds from complex mixtures.
基金financially supported by the National Natural Science Foundation of China(No.21874153)Science Foundation of China University of Petroleum,Beijing(No.2462017BJB09)PetroChina Innovation Foundation(No.2016D-5007-0402)。
文摘An efficient and environment-friendly method for simultaneous determination of 13 typical derivatives of polycyclic aromatic hydrocarbon(PAH)in petroleum-polluted soil with nitro-,oxy-and alkylfunctional group was developed using supercritical fluid extraction(SFE)followed by ultra-high performance supercritical fluid chromatography(UHPSFC).Parameters of UHPSFC,including type of stationary phase and mobile phase modifiers,gradient elution process,backpressure,column temperature,and the flow rate of mobile phase,were systematically optimized,achieving a fast separation within4.2 min.Limits of detection(LOD)were 0.005-0.1μg mL^(-1)or 0.1-2.0 ng g^(-1),respectively,with a good repeatability(RSD<5.0%).Before UHPSFC-PDA analysis,the PAH-derivatives in soil samples were effectively enriched in 15.0 min using SFE with an online carbon nanotubes(CNTs)collection trap.The soil samples were analyzed by the proposed method and the results were verified by GC-MS.Thus,SFE equipped with an online CNTs trap followed by UHPSFC-PDA analysis,which only consumed about2.0 mL organic solvent for a whole run,has been demonstrated to be an efficient way for screening and quantitative analysis of trace-level PAH-derivatives in soil samples.
文摘Six aromatic polyesters were prepared for gas separation membranes, and their permeation properties for hydrogen, oxygen, nitrogen, carbon dioxide, and methane were measured at 30 degrees C and 1 atmosphere by low pressure manometric method. The correlation between the gas transport behavior and molecular structure of aromatic polyester membrane is discussed. These data are interpreted qualitatively in terms of the calculated packing density, gas-polymer interaction, concentration of aryl bromine on backbone, and effect of silane group on main chain of polymer.
基金the National Natural Science Foundation of China(Grant No.21736008)the National Key Research and Development Program of China(Grant No.2018YFB0604803).
文摘Methanol to aromatics produces multiple products,resulting in a limited selectivity of xylene.Aromatics upgrading is an effective way to produce more valuable xylene product,and different feed ratios generate discrepant product distributions.This work integrates the aromatics separation with toluene disproportionation,transalkylation of toluene and trimethylbenzene,and isomerization of xylene and trimethylbenzene.Exergy and exergoeconomic analyses are conducted to give insights in the splitting ratios of benzene,toluene and heavy aromatics for aromatics upgrading.First,a detailed simulation model is developed in Aspen HYSYS.Then,300 splitting ratio sets of benzene and toluene for conversion are studied to investigate the process performances.The results indicate that there are different preferences for the splitting ratios of benzene and toluene in terms of exergy and exergoeconomic performances.The process generates lower total exergy destruction when the splitting ratio of toluene varies between 0.07 and 0.18,and that of benzene fluctuates between 0.55 and 0.6.Nevertheless,the process presents lower total product unit cost with the splitting ratio of toluene less than 0.18 and that of benzene fluctuating between 0.44 and 0.89.Besides,it is found that distillation is the biggest contributor to the total exergy destruction,accounting for 94.97%.
文摘Our previous research showed that aliphatic amines were put in order of high reactivity as “ethylamine > ammonia > t-butylamine > diethylamine” on the aromatic nucleophilic substitution of 1-dimetylamino-2,4-bis(trifluoroacetyl)-naphthalene 1 in acetonitrile. The DFT calculation study (B3LYP/6-31G* with solvation model) for the reactions of 1 with above four amines rationally explained the difference of each amines reactivity based on the energies of their Meisenheimer complexes 3 which are assumed to formed as the reaction intermediates in the course of the reaction giving the corresponding N-N exchange products 2. Intramolecular hydrogen bond between amino proton in 1-amino group and carbonyl oxygen in 2-trifluoroacetyl group stabilizes Meisenheimer complexes 3 effectively, and accelerates the substitution reaction from 1 to 2. Our calculation results also predicted that the above order of amines is also true if less polar toluene is used as a solvent instead of acetonitrile even though more enhanced conditions are required.