饱和的碳氢键氧化是合成化学和化学工业中一类重要的化学反应.然而,饱和C(sp^(3))−H键离解能(BDEs)较高、极性较弱,导致了底物难以活化和催化转化效率较低等问题.在过去的几十年,C(sp^(3))−H键的定向活化转化取得了重要的进展.其中,关于...饱和的碳氢键氧化是合成化学和化学工业中一类重要的化学反应.然而,饱和C(sp^(3))−H键离解能(BDEs)较高、极性较弱,导致了底物难以活化和催化转化效率较低等问题.在过去的几十年,C(sp^(3))−H键的定向活化转化取得了重要的进展.其中,关于C(sp^(3))−H键催化氧化的研究主要涉及一些键能低的、预活化的C−H键,包括苄基型、亚甲基型、脂肪族X−CH_(2)(X=O,N)和甲苯等,含有未活化C(sp^(3))−H键的复杂化合物的选择性氧化仍具有挑战性.例如,芳基醚C(sp^(3))−H键功能化通常采用计量的过氧化物氧化剂,或者通过单电子氧化和碱促进的去质子化进一步构建C−C/C−N键,产物选择性较低,也带来了一些不利的环境影响.因此,有必要开发高效、温和的芳基醚C(sp^(3))−H键选择氧化方法,并将其应用于有机合成和药物开发.近年来,光催化C(sp^(3))−H键氧化因其操作简便、氧化还原中性等优点,已发展成为一种有用且多样的催化研究工具.本文发展了一种利用氧气作为氧化剂,在可见光驱动下选择性地将芳基醚C(sp^(3))−H键氧化成为甲酸苯酯类产物的新方法.使用Mes-10-phenyl-Acr^(+)−BF_(4)^(-)光催化剂,高效活化多种氯源(如盐酸、无机氯盐和有机氯化物)得到氯自由基,由于其具有较高的氧化能力(+2.03 V vs.SCE)和对氢原子的亲和力,能够通过氢原子转移过程活化芳基醚C(sp^(3))−键,攫取氢自由基得到相应的烷基碳自由基(•CH_(2)OPh)中间体,进一步被分子氧选择氧化得到酯类目标产物.研究结果表明,多种链状芳基醚和不同取代(如给电子基和吸电子基)芳基醚均可发生氧化反应,高收率地合成了一系列官能团丰富的甲酸苯酯类化合物.本文方法具有反应条件温和、操作简单、官能团耐受性好以及可规模化放大等优点,并且少量的水对反应没有明显影响.机理实验研究结果表明,芳基醚C(sp^(3))−H键的断裂是反应过程的决速步骤.紫外可见吸收光谱结果表明,氯离子与催化剂之间的相互作用强于底物,并且自由基捕获实验证实反应体系中存在氯自由基和烷基碳自由基物种,表明反应经历自由基路径.此外,电子顺磁共振测试结果表明,反应过程中存在单线态氧物种,可能是激发态的光催化剂直接与氧气发生能量转移得到;同位素实验(18O)揭示了甲酸苯酯类化合物氧的来源.综上,本文实现了温和条件下光催化芳基醚C(sp^(3))−H键选择氧化反应,高收率合成了一系列甲酸苯酯类化合物.该方法避免了化学计量的过氧化物和碱等添加剂的使用以及底物的过度氧化,阐明了催化反应机制,为其他醚类化合物的C(sp^(3))−H键氧化功能化提供了新思路,为后续化学合成和药物开发提供了参考和启示.展开更多
Improving the efficiency of metal/reducible metal oxide interfacial sites for hydrogenation reactions of unsaturated groups(e.g.,C=C and C=O)is a promising yet challenging endeavor.In our study,we developed a Pd/CeO_(...Improving the efficiency of metal/reducible metal oxide interfacial sites for hydrogenation reactions of unsaturated groups(e.g.,C=C and C=O)is a promising yet challenging endeavor.In our study,we developed a Pd/CeO_(2) catalyst by enhancing the oxygen vacancy(O V)concentration in CeO_(2) through high-temperature treatment.This process led to the formation of an interface structure ideal for supporting the hydrogenation of methyl oleate to methyl stearate.Specifi cally,metal Pd^(0) atoms bonded to the O V in defective CeO_(2) formed Pd^(0)-O v-Ce^(3+)interfacial sites,enabling strong electron transfer from CeO_(2) to Pd.The interfacial sites exhibit a synergistic adsorption eff ect on the reaction substrate.Pd^(0) sites promote the adsorption and activation of C=C bonds,while O V preferably adsorbs C=O bonds,mitigating competition with C=C bonds for Pd^(0) adsorption sites.This synergy ensures rapid C=C bond activation and accelerates the attack of active H*species on the semi-hydrogenated intermediate.As a result,our Pd/CeO_(2)-500 catalyst,enriched with Pd^(0)-O v-Ce^(3+)interfacial sites,dem-onstrated excellent hydrogenation activity at just 30℃.The catalyst achieved a Cis-C18:1 conversion rate of 99.8% and a methyl stearate formation rate of 5.7 mol/(h·g metal).This work revealed the interfacial sites for enhanced hydrogenation reactions and provided ideas for designing highly active hydrogenation catalysts.展开更多
Photocatalytic decomposition of sugars is a promising way of providing H_(2),CO,and HCOOH as sus-tainable energy vectors.However,the production of C_(1) chemicals requires the cleavage of robust C−C bonds in sugars wi...Photocatalytic decomposition of sugars is a promising way of providing H_(2),CO,and HCOOH as sus-tainable energy vectors.However,the production of C_(1) chemicals requires the cleavage of robust C−C bonds in sugars with concurrent production of H_(2),which remains challenging.Here,the photo-catalytic activity for glucose decomposition to HCOOH,CO(C_(1) chemicals),and H_(2) on Cu/TiO_(2)was enhanced by nitrogen doping.Owing to nitrogen doping,atomically dispersed and stable Cu sites resistant to light irradiation are formed on Cu/TiO_(2).The electronic interaction between Cu and nitrogen ions originates valence band structure and defect levels composed of N 2p orbit,distinct from undoped Cu/TiO_(2).Therefore,the lifetime of charge carriers is prolonged,resulting in the pro-duction of C_(1) chemicals and H_(2) with productivities 1.7 and 2.1 folds that of Cu/TiO_(2).This work pro-vides a strategy to design coordinatively stable Cu ions for photocatalytic biomass conversion.展开更多
The inert carbon–carbon(C–C) bonds cleavage is a main bottleneck in the chemical upcycling of recalcitrant polyolefin plastics waste. Here we develop an efficient strategy to catalyze the complete cleavage of C–C b...The inert carbon–carbon(C–C) bonds cleavage is a main bottleneck in the chemical upcycling of recalcitrant polyolefin plastics waste. Here we develop an efficient strategy to catalyze the complete cleavage of C–C bonds in mixed polyolefin plastics over non-noble metal catalysts under mild conditions. The nickelbased catalyst involving Ni_(2)Al_(3) phase enables the direct transformation of mixed polyolefin plastics into natural gas, and the gas carbon yield reaches up to 89.6%. Reaction pathway investigation reveals that natural gas comes from the stepwise catalytic cleavage of C–C bonds in polypropylene, and the catalyst prefers catalytic cleavage of terminal C–C bond in the side-chain with the low energy barrier.Additionally, our developed approach is evaluated by the technical economic analysis for an economically competitive production process.展开更多
KVPO_(4)F(KVPF)has been extensively investigated as the potential cathode material for potassium-ion batteries(PIBs)owing to its high theoretical capacity,superior operating voltage,and three-dimensional Kt conduction...KVPO_(4)F(KVPF)has been extensively investigated as the potential cathode material for potassium-ion batteries(PIBs)owing to its high theoretical capacity,superior operating voltage,and three-dimensional Kt conduction pathway.Nevertheless,the electrochemical behavior of KVPF is limited by the inherent poor electronic conductivity of the phosphate framework and unstable electrode/electrolyte interface.To address the above issues,this work proposes an infiltration-calcination method to confine the in-situ grown KVPF into the mesoporous carbon CMK-3(denoted KVPF@CMK-3).The assembled KVPF@CMK-3 nanocomposite features three-dimensional interconnected carbon channels,which not only offer abundant active sites and significantly accelerate K t/electron transport,but also prevent the growth of KVPF nanoparticle agglomerates,hence stabilizing the structure of the material.Additionally,V–F–C bonds are created at the interface of KVPF and CMK-3,which reduce the loss of F and stabilize the electrode interface.Thus,when tested as a cathode material for PIBs,the KVPF@CMK-3 nanocomposite delivers superior reversible capacitiy(103.2 mAh g^(-1) at 0.2 C),outstanding rate performance(90.1 mAh g^(-1) at 20 C),and steady cycling performance(92.2 mAh g^(-1) at 10 C and with the retention of 88.2%after 500 cycles).Moreover,its potassium storage mechanism is further examined by ex-situ XRD and ex-situ XPS techniques.The above synthetic strategy demonstrates the potential of KVPF@CMK-3 to be applied as the cathode for PIBs.展开更多
A new and simple route for the synthesis of α,β-unsaturated ketones via cleavage of the C-C(O)C single bond of monoalkylated β-diketone has been described. The reaction was catalyzed by copper, a cheap transition m...A new and simple route for the synthesis of α,β-unsaturated ketones via cleavage of the C-C(O)C single bond of monoalkylated β-diketone has been described. The reaction was catalyzed by copper, a cheap transition metal in a weakly basic medium (K<sub>3</sub>PO<sub>4</sub>) at room temperature. To carry out this study, we first had to synthesize the monoalkylated β-diketones 1. Afterwards, α,β-unsaturated ketones 2 were obtained with high yields around 80%. Finally, all the products were characterized by 1H NMR, 13C NMR, and HRMS spectra. .展开更多
文摘饱和的碳氢键氧化是合成化学和化学工业中一类重要的化学反应.然而,饱和C(sp^(3))−H键离解能(BDEs)较高、极性较弱,导致了底物难以活化和催化转化效率较低等问题.在过去的几十年,C(sp^(3))−H键的定向活化转化取得了重要的进展.其中,关于C(sp^(3))−H键催化氧化的研究主要涉及一些键能低的、预活化的C−H键,包括苄基型、亚甲基型、脂肪族X−CH_(2)(X=O,N)和甲苯等,含有未活化C(sp^(3))−H键的复杂化合物的选择性氧化仍具有挑战性.例如,芳基醚C(sp^(3))−H键功能化通常采用计量的过氧化物氧化剂,或者通过单电子氧化和碱促进的去质子化进一步构建C−C/C−N键,产物选择性较低,也带来了一些不利的环境影响.因此,有必要开发高效、温和的芳基醚C(sp^(3))−H键选择氧化方法,并将其应用于有机合成和药物开发.近年来,光催化C(sp^(3))−H键氧化因其操作简便、氧化还原中性等优点,已发展成为一种有用且多样的催化研究工具.本文发展了一种利用氧气作为氧化剂,在可见光驱动下选择性地将芳基醚C(sp^(3))−H键氧化成为甲酸苯酯类产物的新方法.使用Mes-10-phenyl-Acr^(+)−BF_(4)^(-)光催化剂,高效活化多种氯源(如盐酸、无机氯盐和有机氯化物)得到氯自由基,由于其具有较高的氧化能力(+2.03 V vs.SCE)和对氢原子的亲和力,能够通过氢原子转移过程活化芳基醚C(sp^(3))−键,攫取氢自由基得到相应的烷基碳自由基(•CH_(2)OPh)中间体,进一步被分子氧选择氧化得到酯类目标产物.研究结果表明,多种链状芳基醚和不同取代(如给电子基和吸电子基)芳基醚均可发生氧化反应,高收率地合成了一系列官能团丰富的甲酸苯酯类化合物.本文方法具有反应条件温和、操作简单、官能团耐受性好以及可规模化放大等优点,并且少量的水对反应没有明显影响.机理实验研究结果表明,芳基醚C(sp^(3))−H键的断裂是反应过程的决速步骤.紫外可见吸收光谱结果表明,氯离子与催化剂之间的相互作用强于底物,并且自由基捕获实验证实反应体系中存在氯自由基和烷基碳自由基物种,表明反应经历自由基路径.此外,电子顺磁共振测试结果表明,反应过程中存在单线态氧物种,可能是激发态的光催化剂直接与氧气发生能量转移得到;同位素实验(18O)揭示了甲酸苯酯类化合物氧的来源.综上,本文实现了温和条件下光催化芳基醚C(sp^(3))−H键选择氧化反应,高收率合成了一系列甲酸苯酯类化合物.该方法避免了化学计量的过氧化物和碱等添加剂的使用以及底物的过度氧化,阐明了催化反应机制,为其他醚类化合物的C(sp^(3))−H键氧化功能化提供了新思路,为后续化学合成和药物开发提供了参考和启示.
基金This work was supported by the National Key Research and Development Program of China(No.2023YFB4203800).
文摘Improving the efficiency of metal/reducible metal oxide interfacial sites for hydrogenation reactions of unsaturated groups(e.g.,C=C and C=O)is a promising yet challenging endeavor.In our study,we developed a Pd/CeO_(2) catalyst by enhancing the oxygen vacancy(O V)concentration in CeO_(2) through high-temperature treatment.This process led to the formation of an interface structure ideal for supporting the hydrogenation of methyl oleate to methyl stearate.Specifi cally,metal Pd^(0) atoms bonded to the O V in defective CeO_(2) formed Pd^(0)-O v-Ce^(3+)interfacial sites,enabling strong electron transfer from CeO_(2) to Pd.The interfacial sites exhibit a synergistic adsorption eff ect on the reaction substrate.Pd^(0) sites promote the adsorption and activation of C=C bonds,while O V preferably adsorbs C=O bonds,mitigating competition with C=C bonds for Pd^(0) adsorption sites.This synergy ensures rapid C=C bond activation and accelerates the attack of active H*species on the semi-hydrogenated intermediate.As a result,our Pd/CeO_(2)-500 catalyst,enriched with Pd^(0)-O v-Ce^(3+)interfacial sites,dem-onstrated excellent hydrogenation activity at just 30℃.The catalyst achieved a Cis-C18:1 conversion rate of 99.8% and a methyl stearate formation rate of 5.7 mol/(h·g metal).This work revealed the interfacial sites for enhanced hydrogenation reactions and provided ideas for designing highly active hydrogenation catalysts.
文摘Photocatalytic decomposition of sugars is a promising way of providing H_(2),CO,and HCOOH as sus-tainable energy vectors.However,the production of C_(1) chemicals requires the cleavage of robust C−C bonds in sugars with concurrent production of H_(2),which remains challenging.Here,the photo-catalytic activity for glucose decomposition to HCOOH,CO(C_(1) chemicals),and H_(2) on Cu/TiO_(2)was enhanced by nitrogen doping.Owing to nitrogen doping,atomically dispersed and stable Cu sites resistant to light irradiation are formed on Cu/TiO_(2).The electronic interaction between Cu and nitrogen ions originates valence band structure and defect levels composed of N 2p orbit,distinct from undoped Cu/TiO_(2).Therefore,the lifetime of charge carriers is prolonged,resulting in the pro-duction of C_(1) chemicals and H_(2) with productivities 1.7 and 2.1 folds that of Cu/TiO_(2).This work pro-vides a strategy to design coordinatively stable Cu ions for photocatalytic biomass conversion.
基金supported by the National Natural Science Foundation of China (grant 22208339)the China Postdoctoral Science Foundation (2021M693132)+2 种基金the National Key R&D Program of China (2019YFC1905303)the Doctoral Scientific Research Foundation of Liaoning Province (2021-BS-006)the Youth Innovation Fund of Dalian Institute of Chemical Physics (DICP I202132)。
文摘The inert carbon–carbon(C–C) bonds cleavage is a main bottleneck in the chemical upcycling of recalcitrant polyolefin plastics waste. Here we develop an efficient strategy to catalyze the complete cleavage of C–C bonds in mixed polyolefin plastics over non-noble metal catalysts under mild conditions. The nickelbased catalyst involving Ni_(2)Al_(3) phase enables the direct transformation of mixed polyolefin plastics into natural gas, and the gas carbon yield reaches up to 89.6%. Reaction pathway investigation reveals that natural gas comes from the stepwise catalytic cleavage of C–C bonds in polypropylene, and the catalyst prefers catalytic cleavage of terminal C–C bond in the side-chain with the low energy barrier.Additionally, our developed approach is evaluated by the technical economic analysis for an economically competitive production process.
基金This work was supported by the National Natural Science Foundation of China(22179063).
文摘KVPO_(4)F(KVPF)has been extensively investigated as the potential cathode material for potassium-ion batteries(PIBs)owing to its high theoretical capacity,superior operating voltage,and three-dimensional Kt conduction pathway.Nevertheless,the electrochemical behavior of KVPF is limited by the inherent poor electronic conductivity of the phosphate framework and unstable electrode/electrolyte interface.To address the above issues,this work proposes an infiltration-calcination method to confine the in-situ grown KVPF into the mesoporous carbon CMK-3(denoted KVPF@CMK-3).The assembled KVPF@CMK-3 nanocomposite features three-dimensional interconnected carbon channels,which not only offer abundant active sites and significantly accelerate K t/electron transport,but also prevent the growth of KVPF nanoparticle agglomerates,hence stabilizing the structure of the material.Additionally,V–F–C bonds are created at the interface of KVPF and CMK-3,which reduce the loss of F and stabilize the electrode interface.Thus,when tested as a cathode material for PIBs,the KVPF@CMK-3 nanocomposite delivers superior reversible capacitiy(103.2 mAh g^(-1) at 0.2 C),outstanding rate performance(90.1 mAh g^(-1) at 20 C),and steady cycling performance(92.2 mAh g^(-1) at 10 C and with the retention of 88.2%after 500 cycles).Moreover,its potassium storage mechanism is further examined by ex-situ XRD and ex-situ XPS techniques.The above synthetic strategy demonstrates the potential of KVPF@CMK-3 to be applied as the cathode for PIBs.
文摘A new and simple route for the synthesis of α,β-unsaturated ketones via cleavage of the C-C(O)C single bond of monoalkylated β-diketone has been described. The reaction was catalyzed by copper, a cheap transition metal in a weakly basic medium (K<sub>3</sub>PO<sub>4</sub>) at room temperature. To carry out this study, we first had to synthesize the monoalkylated β-diketones 1. Afterwards, α,β-unsaturated ketones 2 were obtained with high yields around 80%. Finally, all the products were characterized by 1H NMR, 13C NMR, and HRMS spectra. .