期刊文献+
共找到1,225篇文章
< 1 2 62 >
每页显示 20 50 100
Direct Visual Evidence for Neutral and Charged Hexaphyrin Aromaticity with and without Keto-Defect
1
作者 Shan Zhang Peng Song +5 位作者 Sha Wang Yu-ling Chu Yuan-zuo Li Zhong Yang Yong Ding Feng-cai Ma 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第5期563-570,I0003,共9页
We use density functional theory and time-dependent together with a set of extensive mul- tidimensional visualization techniques to characterize the influence of keto effect on charge distribution at ground state and ... We use density functional theory and time-dependent together with a set of extensive mul- tidimensional visualization techniques to characterize the influence of keto effect on charge distribution at ground state and electronic transitions for neutral and charged hexaphyrin aromaticity with and without keto-defect. It is found that the aromaticity is the key fac- tor to influence the ground state Mulliken charges distribution properties, other than the meso-aryl-substituted effect. But with the enhancement of the keto-defect, the distribution changes of Mulliken charges on the hexaphyrin groups are larger than those on the pentaflu- orophenyl substituted groups, following with the aromaticity changes from nonaromatic to aromatic. Furthermore, through characterizing by transition density and charge difference density, direct visual evidence for neutral and charged aromaticity with and without keto- defect can be clearly derived, and the ability of charge transfer between units of monoradical (nonaromaticity) and singlet biradical (aromaticity) forms is much stronger than that of neutral forms. 展开更多
关键词 aromaticity Keto-defect PORPHYRIN Charge difference density Transitiondensity
下载PDF
Structures and Aromaticity of Planar XY_2Z (X=Li,K,Y=P,As and Z=C,Si,Ge) Clusters
2
作者 徐文国 章瑞春 常宏艳 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2009年第9期1067-1076,共10页
Clusters XY2Z species are theoretically investigated with density functional theory (DFT) method. The results show that for LiP2C, LiAs2Ge and KAs2C species, the C2v isomer is the most stable planar structure, while... Clusters XY2Z species are theoretically investigated with density functional theory (DFT) method. The results show that for LiP2C, LiAs2Ge and KAs2C species, the C2v isomer is the most stable planar structure, while for other species the Cs isomer is the most stable planar structure at the B3LYP/6-311+G* level. Wiberg Bond Index (WBI) and Nucleus-Independent Chemical Shift (NICS) values indicate the existence of delocalization in stable planar structures. A detailed Molecular Orbital (MO) analysis further reveals that planar isomers of these species have strong aromatic character, which strengthens the structural stability and makes them closely connect with the concept of aromaticity. 展开更多
关键词 CLUSTERS structure aromaticity DFT calculation NICS
下载PDF
Designer Mg-Mg and Zn-Zn Single Bonds Facilitated by Double Aromaticity in the M2B7^-(M=Mg,Zn)Clusters
3
作者 Wei Wang Jie Wang +3 位作者 Chu Gong Chaonan Mu Dongmei Zhang Xinxing Zhang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第5期578-582,I0011-I0013,I0078,共9页
The simple homodinuclear M-M single bonds for group II and XII elements are difficult to obtain as a result of the fulfilled s2electronic configurations,consequently,a dicationic prototype is often utilized to design ... The simple homodinuclear M-M single bonds for group II and XII elements are difficult to obtain as a result of the fulfilled s2electronic configurations,consequently,a dicationic prototype is often utilized to design the M^+-M^+single bond.Existing studies generally use sterically bulky organic ligands L^-to synthesize the compounds in the L^--M^+-M^+-L-manner.However,here we report the design of Mg-Mg and Zn-Zn single bonds in two ligandless clusters,Mg2B7-and Zn2B7-,using density functional theory methods.The global minima of both of the clusters are in the form of M2^2+(B7^3-),where the M-M single bonds are positioned above a quasi-planar hexagonal B7 moiety.Chemical bonding analyses further confirm the existence of Mg-Mg and Zn-Zn single bonds in these clusters,which are driven by the unusually stable B7^3-moiety that is bothσandπaromatic.Vertical detachment energies of Mg2B7-and Zn2B7-are calculated to be 2.79 e V and 2.94 e V,respectively,for the future comparisons with experimental data. 展开更多
关键词 Mg-Mg single bond Zn-Zn single bond Density functional theory Double aromaticity Cluster
下载PDF
Structure and Aromaticity of AlCO-substituted Semibullvalene
4
作者 YAO Wen-Zhi WU Hai-Shun 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2007年第8期897-901,共5页
The structures, energies and aromaticity (the nuclear-independent chemical shifts,NICS) of AlCO-substituted semibullvalenes were investigated at the B3LYP/6-311+G** level.Similar to BCO-substituted analogues, [2,... The structures, energies and aromaticity (the nuclear-independent chemical shifts,NICS) of AlCO-substituted semibullvalenes were investigated at the B3LYP/6-311+G** level.Similar to BCO-substituted analogues, [2,6]-AlCO-semibullvalene is neutral bishomoaromatic.The NICS values reveal that the aromaticity of AlCO-substituted structures is smaller than that of BCO analogues. 展开更多
关键词 DFT SEMIBULLVALENE AlCO aromaticity
下载PDF
Aromaticity of Heterofullerenes C18BxNy (x+y=2) and Their Molecular lons
5
作者 Jia-li Chen Ablikim Kerim 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2008年第2期118-122,共5页
The aromaticity of all possible substituted fullerene isomers of C18N2, C18B2, C18BN, and their molecular ions which originate from the C20 (Ih) cage were studied by the topological resonance energy (TRE) and the ... The aromaticity of all possible substituted fullerene isomers of C18N2, C18B2, C18BN, and their molecular ions which originate from the C20 (Ih) cage were studied by the topological resonance energy (TRE) and the percentage topological resonance energy methods. The relationship between the aromaticity of C18BxNy isomers and the sites where the heteroatoms dope at the C20 (Ih) cage is discussed. Calculation results show that at the neutral and cationic states all the isomers are predicted to be antiaromatic with negative TREs, but their polyvalent anions are predicted to be aromatic with positive TREs. The most stable isomer is formed by heteroatom doping at the 1,11-sites in C18N2. C18B2, and C18BN. Heterofullerenes are more aromatic than C20. The stability order in the neutral states is C18N2〉C18BN〉C18B2〉C20. The stability order in closed-shell is C18B2^8- 〉C20^6- 〉C18BN^6- 〉C18N2^4-. This predicts theoretically that their polyvalent anions have high aromaticity. 展开更多
关键词 C18N2 C18B2 C18BN aromaticity Topological resonance energy
下载PDF
Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives
6
作者 Fangwen Peng Zhen Luo +1 位作者 Yingjin Ma Haibo Ma 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2024年第5期8-10,共3页
Aromaticity has always been an intriguing chemistry topic,which is considered to have close relations with materials'stability and chemical reactivity due to special energy profiles.For conjugated cycles,Hück... Aromaticity has always been an intriguing chemistry topic,which is considered to have close relations with materials'stability and chemical reactivity due to special energy profiles.For conjugated cycles,Hückel's rule,proposed in 1931,suggests that annulenes having[4n+2]and[4n]πelectrons present aromatic and antiaromatic characters with closed and open electronic configurations,respectively[1]. 展开更多
关键词 Hückel AROMATIC REACTIVITY
原文传递
The application of aromaticity and antiaromaticity to reaction mechanisms 被引量:1
7
作者 Qin Zhu Shuwen Chen +5 位作者 Dandan Chen Lu Lin Kui Xiao Liang Zhao Miquel Solà Jun Zhu 《Fundamental Research》 CSCD 2023年第6期926-938,共13页
Aromaticity,in general,can promote a given reaction by stabilizing a transition state or a product via a mobility ofπelectrons in a cyclic structure.Similarly,such a promotion could be also achieved by destabilizing ... Aromaticity,in general,can promote a given reaction by stabilizing a transition state or a product via a mobility ofπelectrons in a cyclic structure.Similarly,such a promotion could be also achieved by destabilizing an antiaromatic reactant.However,both aromaticity and transition states cannot be directly measured in experiment.Thus,computational chemistry has been becoming a key tool to understand the aromaticity-driven reaction mechanisms.In this review,we will analyze the relationship between aromaticity and reaction mechanism to highlight the importance of density functional theory calculations and present it according to an approach via either aromatizing a transition state/product or destabilizing a reactant by antiaromaticity.Specifically,we will start with a particularly challenging example of dinitrogen activation followed by other small-molecule activation,Csingle bondF bond activation,rearrangement,as well as metathesis reactions.In addition,antiaromaticity-promoted dihydrogen activation,CO_(2)capture,and oxygen reduction reactions will be also briefly discussed.Finally,caution must be cast as the magnitude of the aromaticity in the transition states is not particularly high in most cases.Thus,a proof of an adequate electron delocalization rather than a complete ring current is recommended to support the relatively weak aromaticity in these transition states. 展开更多
关键词 aromaticity ANTIaromaticity Reaction mechanism Frustrated Lewis pairs Dinitrogen activation Small molecule activation
原文传递
Aromaticity Concerto in Polycyclic Conjugated Hydrocarbons:Fusion Pattern on Combined Aromaticity Strategy Leads to Distinctive Excited State Photophysics of Dinaphthopentalenes
8
作者 Long Wang Lu Lin +9 位作者 Teng-Shuo Zhang Shaoting Guo Zuyuan Liu Mengfan Zhang Senhao Wang Ganglong Cui Wei-Hai Fang Jun Zhu Hongbing Fu Jiannian Yao 《CCS Chemistry》 CSCD 2023年第10期2264-2276,共13页
Understanding the structure-property relationships in polycyclic conjugated hydrocarbons(PCHs)is crucial in controlling their electronic properties and developing new optically functional materials.Aromaticity is a fu... Understanding the structure-property relationships in polycyclic conjugated hydrocarbons(PCHs)is crucial in controlling their electronic properties and developing new optically functional materials.Aromaticity is a fundamentally important and intriguing property of numerous organic chemical structures and has stimulated a myriad of experimental and theoretical investigations.Exploiting aromaticity rules for the rational design of optoelectronic materials with the desired photophysical characteristics is a challenging yet fascinating task.Herein we present an in-depth computational and spectroscopic study on the structure-property relationships of dinaphthopentalenes(DNPs).Results highlight that the different fusion patterns between 4nπand 4n+2πunits endow these PCHs with the tunable aromaticity in the ground state/excited state,which leads to the diverse electronic structures and consequently the distinctive excited state photophysics.Accordingly,we propose a combined aromaticity design strategy for rationally modulating and tailoring electronic and optical properties of PCH skeletons.These outcomes not only present a full picture of the excited state dynamics of the DNP system and afford a new class of efficient singlet fission-active materials but also provide some basic guidelines for exploiting aromaticity rules to design and develop new optical function materials. 展开更多
关键词 polycyclic conjugated hydrocarbon aromaticity fusion pattern excited state photophysics singlet fission combined aromaticity design strategy optical function materials
原文传递
An innovative classification system for ranking the biological effects of marine aromatic hydrocarbons based on fish embryotoxicity 被引量:1
9
作者 Ronghui Zheng Chao Fang +4 位作者 Fukun Hong Min Zhang Fulong Gao Yusheng Zhang Jun Bo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第6期153-162,共10页
Petroleum hydrocarbon pollution is a global concern,particularly in coastal environments.Polycyclic aromatic hydrocarbons(PAHs) are regarded as the most toxic components of petroleum hydrocarbons.In this study,the bio... Petroleum hydrocarbon pollution is a global concern,particularly in coastal environments.Polycyclic aromatic hydrocarbons(PAHs) are regarded as the most toxic components of petroleum hydrocarbons.In this study,the biomonitoring and ranking effects of petroleum hydrocarbons and PAHs on the marine fish model Oryzias melastigma embryos were determined in the Jiulong River Estuary(JRE) and its adjacent waters in China.The results showed that the levels of petroleum hydrocarbons from almost all sites met the primary standard for marine seawater quality,and the concentrations of the 16 priority PAHs in the surface seawater were lower compared with those in other coastal areas worldwide.A new fish expert system based on the embryotoxicity of O.melastigma(OME-FES) was developed and applied in the field to evaluate the biological effects of petroleum hydrocarbons and PAHs.The selected physiological index and molecular indicators in OME-FES were appropriate biomarkers for indicating the harmful effects of petroleum hydrocarbons and PAHs.The outcome of OME-FES revealed that the biological effect levels of the sampling sites ranged from level Ⅰ(no stress) to level Ⅲ(medium stress),which is further corroborated by the findings of nested analysis of variance(ANOVA) models.Our results suggest that the OME-FES is an effective tool for evaluating and ranking the biological effects of marine petroleum hydrocarbons and PAHs.This method may also be applied to evaluate other marine pollutants based on its framework. 展开更多
关键词 petroleum hydrocarbons polycyclic aromatic hydrocarbons fish expert system integrated biomarker response nested one-way analysis of variance
下载PDF
A PRELIMINARY QUANTUM CHEMICAL ANALYSIS OF THE NATURE OF QUASI-AROMATICITY OF THE PUCKERED [Mo_3S_3] RING IN CERTAIN [Mo_3S_4]^(4+) CLUSTERS 被引量:2
10
作者 陈志达 李隽 +4 位作者 程文旦 黄建全 刘春万 张乾二 卢嘉锡 《Chinese Science Bulletin》 SCIE EI CAS 1990年第20期1698-1704,共7页
During the past few years we have carried out in our Institute and Research Laboratory a series of systematic crystal structure analyses and chemical reactivity. studies on
关键词 aromaticity localized MO. clusters.
原文传递
[(CrGe_(9))Cr_(2)(CO)_(13)]^(4-): A disubstituted case of ten-vertex closo cluster with spherical aromaticity 被引量:1
11
作者 Ya-Shan Huang Dandan Chen +1 位作者 Jun Zhu Zhong-Ming Sun 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第4期2139-2142,共4页
We report the first disubstituted hetero-ten-vertex closo cluster [(CrGe_(9))Cr_(2)(CO)_(13)]^(4-)with three adjacent Cr(CO);units adopting both η^(5) and η^(1) coordination modes,which was synthesized through the r... We report the first disubstituted hetero-ten-vertex closo cluster [(CrGe_(9))Cr_(2)(CO)_(13)]^(4-)with three adjacent Cr(CO);units adopting both η^(5) and η^(1) coordination modes,which was synthesized through the reaction of "KGe;" with(MeCN)_(3)Cr(CO)_(4)and Cr(CO)_(6)in ethylenediamine(en) solution.In contrast to the η^(1)-Cr atoms forming localized two-center two-elelctron(2 c-2 e) Cr-Ge bonds,the hetero atom η^(5)-Cr exhibits versatile bonding mechanisms including three 5 c-2 e and five 8 c-2 e delocalized bonds which account for Hückel aromaticity.Intricate multi-center bonding patterns delineate the multiple local σ-aromatic characters of the title cluster displaying explicit spherical aromaticity. 展开更多
关键词 Hetero-ten-atom clusters Closo structure FUNCTIONALIZATION Multi-center bonding Spherical aromaticity
原文传递
Observation of “Outlaw” Dual Aromaticity in Unexpectedly Stable Open-Shell Metal Clusters Caused by Near-Degenerate Molecular Orbital Coupling 被引量:2
12
作者 Jun Li Jing Wang +2 位作者 Jing Chen Yu-Xiang Bu Shi-Bo Cheng 《CCS Chemistry》 CAS 2021年第7期1913-1920,共8页
The Hückel’s rule,Baird’s rule,and electronic shell closure model are classical and well-established concepts in chemistry,which have long been employed in rationalizing the aromaticity/antiaromaticity of organ... The Hückel’s rule,Baird’s rule,and electronic shell closure model are classical and well-established concepts in chemistry,which have long been employed in rationalizing the aromaticity/antiaromaticity of organic species and stability of inorganic clusters.Thus,the observation of unique species featuring properties out of the fundamental frameworks of these rules is challenging but significant and helps in drawing a complete picture of fascinating concepts in chemistry. 展开更多
关键词 relative stability aromaticity inorganic metal clusters density functional theory calculations near-degenerate molecular orbital coupling electronic shell closure model
原文传递
Highly selective extraction of aromatics from aliphatics by using metal chloride-based ionic liquids
13
作者 Hui Yu Xiaojia Wu +4 位作者 Chuanqi Geng Xinyu Li Chencan Du Zhiyong Zhou Zhongqi Ren 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期222-229,共8页
The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and... The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and their performances in the separation of 1,2,3,4-tetrahydronaphthalene(tetralin)/dodecane and tetralin/decalin systems were studied.Among these ionic liquids,1-ethyl-3-methylimidazolium tetrachloroferrate([EMIM][FeCl_(4)])with the highest selectivity was used as the extractant.Density functional theory calculations showed that[EMIM][FeCl_(4)]interacted more strongly with tetralin than with dodecane and decalin.Energy decomposition analysis of[EMIM][FeCl_(4)]-tetralin indicated that electrostatics and dispersion played essential roles,and induction cannot be neglected.The van der Waals forces was a main effect in[EMIM][FeCl_(4)]-tetralin by independent gradient model analysis.The tetralin distribution coefficient and selectivity were 0.8 and 110,respectively,with 10%(mol)tetralin in the initial tetralin/dodecane system,and 0.67 and 19.5,respectively,with 10%(mol)tetralin in the initial tetralin/decalin system.The selectivity increased with decreasing alkyl chain length of the extractant.The influence of the extraction temperature,extractant dosage,and initial concentrations of the system components on the separation performance were studied.Recycling experiments showed that the regenerated[EMIM][FeCl_(4)]could be used repeatedly. 展开更多
关键词 Ionic liquid Aromatic hydrocarbon Aliphatic hydrocarbon Extraction
下载PDF
Hyperbranched polymer hollow-fiber-composite membranes for pervaporation separation of aromatic/aliphatic hydrocarbon mixtures
14
作者 Tong Liu Hao Sun +5 位作者 Xiangqiong Wang Jie Li Zhanquan Zhang Pei Wu Naixin Wang Quanfu An 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期13-22,共10页
The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing me... The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures. 展开更多
关键词 Aromatic/aliphatic hydrocarbons Hyperbranched polymer PERVAPORATION Hollow fiber membrane DIP-COATING
下载PDF
Fabrication of pollution-free coal gangue-based catalytic material utilizing ferrous chloride as activator for efficient peroxymonosulfate activation
15
作者 Zhiming Sun Xinlin Wang +3 位作者 Shaoran Jia Jialin Liang Xiaotian Ning Chunquan Li 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期103-118,共16页
Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).T... Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).The phase transformation of the prepared materials and gas products during the heating process are thoroughly investigated.It is suggested that ferrous chloride participated in the phase transformation and formed Si-O-Fe bonds.And the main gaseous products are H_(2)O,H_(2),and HCl during the heating process.Besides,the ability of CG-FeCl_(2) to activate peroxymonosulfate(PMS)for catalytic degradation of polycyclic aromatic hydrocarbons(PAHs)and phenol was deeply studied.More than 95%of naphthyl,phenanthrene and phenol were removed under optimizied conditions.In addition,1O_(2),·OH,and SO_(4)·−were involved in the CG-FeCl_(2)/PMS system from the free radical scavenging experiment,where 1O_(2) played a major role during the oxidation process.Furthermore,CG-FeCl_(2)/PMS system exhibited superior stability in a relatively wide pH range and the presence of common anion from related degradation experiments.Overall,the novel CG-FeCl_(2) is an efficient and environmentally friendly catalyst,displaying potential application prospect in the field of PAHs and phenol-contaminated wastewater treatment. 展开更多
关键词 Coal gangue Persulfate activation Advanced oxidation processes Polycyclic aromatic hydrocarbons Phenol Ferrous chloride
下载PDF
Rational design of new in situ reduction of Ni(II)catalytic system for low-cost and large-scale preparation of porous aromatic frameworks
16
作者 Shanshan Wang Yue Wu +3 位作者 Wenxiang Zhang Hao Ren Guangshan Zhu Heping Ma 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期105-113,共9页
Porous aromatic framework 1(PAF-1)is an extremely representative nanoporous organic framework owing to its high stability and exceptionally high surface area.Currently,the synthesis of PAF-1 is catalyzed by the Ni(COD... Porous aromatic framework 1(PAF-1)is an extremely representative nanoporous organic framework owing to its high stability and exceptionally high surface area.Currently,the synthesis of PAF-1 is catalyzed by the Ni(COD)2/COD/bpy system,suffering from great instability and high cost.Herein,we developed an in situ reduction of the Ni(II)catalytic system to synthesize PAF-1 in low cost and high yield.The active Ni(0)species produced from the NiCl_(2)/bpy/NaI/Mg catalyst system can effectively catalyze homocoupling of tetrakis(4-bromophenyl)methane at the room temperature to form PAF-1 with high Brunauer-Emmett-Teller(BET)-specific surface area up to 4948 m^(2) g^(−1)(Langmuir surface area,6785 m2 g−1).The possible halogen exchange and dehalogenation coupling mechanisms for this new catalytic process in PAF's synthesis are discussed in detail.The efficiency and universality of this innovative catalyst system have also been demonstrated in other PAFs'synthesis.This work provides a cheap,facile,and efficient method for scalable synthesis of PAFs and explores their application for high-pressure storage of Xe and Kr. 展开更多
关键词 adsorption carbon material nickel catalysis porous aromatic framework porous organic polymer
下载PDF
Effect of mesopore spatial distribution of HZSM-5 catalyst on zinc state and product distribution in 1-hexene aromatization
17
作者 Chenhao Wei Di Gao +3 位作者 Guohao Zhang Liang Zhao Jinsen Gao Chunming Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期16-26,共11页
1-hexene aromatization is a promising technology to convert excess olefin in fluid catalytic cracking(FCC)gasoline to high-value benzene(B),toluene(T),and xylene.Besides,the increasing market demand of xylene has put ... 1-hexene aromatization is a promising technology to convert excess olefin in fluid catalytic cracking(FCC)gasoline to high-value benzene(B),toluene(T),and xylene.Besides,the increasing market demand of xylene has put forward higher requirements for new generation of catalyst.For increasing xylene yield in 1-hexene aromatization,the effect of mesopore structure and spatial distribution on product distribution and Zn loading was studied.Catalysts with different mesopore spatial distribution were prepared by post-treatment of parent HZSM-5 zeolite,including NaOH treatment,tetra-propylammonium hydroxide(TPAOH)treatment,and recrystallization.It was found the evenly distributed mesopore mainly prolongs the catalyst lifetime by enhancing diffusion properties but reduces the aromatics selectivity,as a result of damage of micropores close to the catalyst surface.While the selectivity of high-value xylene can be highly promoted when the mesopore is mainly distributed interior the catalyst.Besides,the state of loaded Zn was also affected by mesopores spatial distribution.On the optimized catalyst,the xylene selectivity was enhanced by 12.4%compared with conventional Zn-loaded parent HZSM-5 catalyst at conversion over 99%.It was attributed to the synergy effect of mesopores spatial distribution and optimized acid properties.This work reveals the role of mesopores in different spatial positions of 1-hexene aromatization catalysts in the reaction process and the influence on metal distribution,as well as their synergistic effect two on the improvement of xylene selectivity,which can improve our understanding of catalyst pore structure and be helpful for the rational design of high-efficient catalyst. 展开更多
关键词 1-Hexene aromatization Alkali treatment Xylene selectivity MESOPORES Zinc state
下载PDF
Changes in the Non-targeted Metabolomic Profile of Three-year-old Toddlers with Elevated Exposure to Polycyclic Aromatic Hydrocarbons
18
作者 LI Yang LIN Dan +7 位作者 ZHANG Xiu Qin JU Guang Xiu SU Ya ZHANG Qian DUAN Hai Ping YU Wei Sen WANG Bing Ling PANG Shu Tao 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第5期479-493,共15页
Objective To investigate changes in the urinary metabolite profiles of children exposed to polycyclic aromatic hydrocarbons(PAHs)during critical brain development and explore their potential link with the intestinal m... Objective To investigate changes in the urinary metabolite profiles of children exposed to polycyclic aromatic hydrocarbons(PAHs)during critical brain development and explore their potential link with the intestinal microbiota.Methods Liquid chromatography-tandem mass spectrometry was used to determine ten hydroxyl metabolites of PAHs(OH-PAHs)in 36-month-old children.Subsequently,37 children were categorized into low-and high-exposure groups based on the sum of the ten OH-PAHs.Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used to identify non-targeted metabolites in the urine samples.Furthermore,fecal flora abundance was assessed by 16S rRNA gene sequencing using Illumina MiSeq.Results The concentrations of 21 metabolites were significantly higher in the high exposure group than in the low exposure group(variable importance for projection>1,P<0.05).Most of these metabolites were positively correlated with the hydroxyl metabolites of naphthalene,fluorine,and phenanthrene(r=0.336–0.531).The identified differential metabolites primarily belonged to pathways associated with inflammation or proinflammatory states,including amino acid,lipid,and nucleotide metabolism.Additionally,these distinct metabolites were significantly associated with specific intestinal flora abundances(r=0.34–0.55),which were mainly involved in neurodevelopment.Conclusion Higher PAH exposure in young children affected metabolic homeostasis,particularly that of certain gut microbiota-derived metabolites.Further investigation is needed to explore the potential influence of PAHs on the gut microbiota and their possible association with neurodevelopmental outcomes. 展开更多
关键词 Child Gut microbiota Non-targeted metabolomics Polycyclic aromatic hydrocarbons Urinary metabolite profile
下载PDF
Effect of Steam Treatment on the Catalytic Performance of ZSM-5 in the Co-conversion of Methanol and n-Hexane to Aromatics
19
作者 Wei Shumei Xu Yarong +2 位作者 Yang Fan Zhu Kake Zhu Xuedong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第3期73-81,共9页
Steam pretreatment is a widely used method for modifying the acidity and structure of zeolites,thereby enhancing their catalytic properties.This study systematically investigated the effects of steam treatment on ZSM-... Steam pretreatment is a widely used method for modifying the acidity and structure of zeolites,thereby enhancing their catalytic properties.This study systematically investigated the effects of steam treatment on ZSM-5 zeolites at varying treatment temperatures and durations.The structural evolution of the catalysts was monitored using N2 adsorptiondesorption,X-ray diffraction,inductively coupled plasma optical emission spectroscopy,scanning electron microscopy,NH3 temperature-programmed desorption,in situ pyridine infrared spectroscopy,and thermogravimetric analysis.The characterization results revealed that mesopores were introduced into the ZSM-5 zeolite catalysts through dealumination induced using steam treatment at moderate temperatures(400 and 500℃).Moreover,compared with the parent catalyst,the steam-treated catalysts exhibited a lower amount of acid sites and relative crystallinity,while the n(Si)/n(Al)ratio increased.In the co-conversion of methanol and n-hexane in a fixed bed reactor at 400℃and 0.5 MPa(N2 atmosphere),with a weight hourly space velocity of 1 h−1 and a stoichiometric ratio of 1:1(CH3OH to n-hexane),the steam-treated catalysts displayed a prolonged catalyst lifetime.Particularly,the parent zeolite had a lifetime of 96 h,while the catalyst treated at 500℃for 12 h had a lifetime of up to 240 h.Additionally,the steam-treated catalysts maintained stable n-hexane conversion and improved aromatic selectivity.Notably,these treated catalysts exhibited a lower deactivation rate than the parent catalyst,and would be conducive to industrial scale-up production. 展开更多
关键词 steam ZSM-5 zeolites co-conversion AROMATIZATION METHANOL N-HEXANE
下载PDF
Physiology of medicinal and aromatic plants under drought stress
20
作者 Zohreh Emami Bistgani Allen V.Barker Masoud Hashemi 《The Crop Journal》 SCIE CSCD 2024年第2期330-339,共10页
Drought poses a significant challenge,restricting the productivity of medicinal and aromatic plants.The strain induced by drought can impede vital processes like respiration and photosynthesis,affecting various aspect... Drought poses a significant challenge,restricting the productivity of medicinal and aromatic plants.The strain induced by drought can impede vital processes like respiration and photosynthesis,affecting various aspects of plants’growth and metabolism.In response to this adversity,medicinal plants employ mechanisms such as morphological and structural adjustments,modulation of drought-resistant genes,and augmented synthesis of secondary metabolites and osmotic regulatory substances to alleviate the stress.Extreme water scarcity can lead to leaf wilting and may ultimately result in plant death.The cultivation and management of medicinal plants under stress conditions often differ from those of other crops.This is because the main goal with medicinal plants is not only to increase the yield of the above-ground parts but also to enhance the production of active ingredients such as essential oils.To elucidate these mechanisms of drought resistance in medicinal and aromatic plants,the current review provides a summary of recent literature encompassing studies on the morphology,physiology,and biochemistry of medicinal and aromatic plants under drought conditions. 展开更多
关键词 Drought stress Medicinal and aromatic plants PHYTOCHEMISTRY PHYSIOLOGY
下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部