Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However...Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However,the catalyst deactivation is an inevitable feature in MTO processes,and regeneration,therefore,is one of the key steps in industrial MTO processes.Traditionally the MTO catalyst is regenerated by removing the deposited coke via air combustion,which unavoidably transforms coke into carbon dioxide and reduces the carbon utilization efficiency.Recent study shows that the coke species over MTO catalyst can be regenerated via steam,which can promote the light olefins yield as the deactivated coke species can be essentially transferred to industrially useful synthesis gas,is a promising pathway for further MTO processes development.In this work,we modelled and analyzed these two MTO regeneration methods in terms of carbon utilization efficiency and technology economics.As shown,the steam regeneration could achieve a carbon utilization efficiency of 84.31%,compared to 74.74%for air combustion regeneration.The MTO processes using steam regeneration can essentially achieve the near-zero carbon emission.In addition,light olefins production of the MTO processes using steam regeneration is 12.81%higher than that using air combustion regeneration.In this regard,steam regeneration could be considered as a potential yet promising regeneration method for further MTO processes,showing not only great environmental benefits but also competitive economic performance.展开更多
The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and...The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and their performances in the separation of 1,2,3,4-tetrahydronaphthalene(tetralin)/dodecane and tetralin/decalin systems were studied.Among these ionic liquids,1-ethyl-3-methylimidazolium tetrachloroferrate([EMIM][FeCl_(4)])with the highest selectivity was used as the extractant.Density functional theory calculations showed that[EMIM][FeCl_(4)]interacted more strongly with tetralin than with dodecane and decalin.Energy decomposition analysis of[EMIM][FeCl_(4)]-tetralin indicated that electrostatics and dispersion played essential roles,and induction cannot be neglected.The van der Waals forces was a main effect in[EMIM][FeCl_(4)]-tetralin by independent gradient model analysis.The tetralin distribution coefficient and selectivity were 0.8 and 110,respectively,with 10%(mol)tetralin in the initial tetralin/dodecane system,and 0.67 and 19.5,respectively,with 10%(mol)tetralin in the initial tetralin/decalin system.The selectivity increased with decreasing alkyl chain length of the extractant.The influence of the extraction temperature,extractant dosage,and initial concentrations of the system components on the separation performance were studied.Recycling experiments showed that the regenerated[EMIM][FeCl_(4)]could be used repeatedly.展开更多
In order to obtain liquefied products with higher yields of aromatic molecules to produce mesophase pitch,a good understanding of the relevant reaction mechanisms is required.Reactive molecular dynamics simulations we...In order to obtain liquefied products with higher yields of aromatic molecules to produce mesophase pitch,a good understanding of the relevant reaction mechanisms is required.Reactive molecular dynamics simulations were used to study the thermal reactions of pyrene,1-methylpyrene,7,8,9,10-tetrahydrobenzopyrene,and mixtures of pyrene with 1-octene,cyclohexene,or styrene.The reactant conversion rates,reaction rates,and product distributions were calculated and compared,and the mechanisms were analyzed and discussed.The results demonstrated that methyl and naphthenic structures in aromatics might improve the conversion rates of reactants in hydrogen transfer processes,but their steric hindrances prohibited the generation of high polymers.The naphthenic structures could generate more free radicals and presented a more obvious inhibition effect on the condensation of polymers compared with the methyl side chains.It was discovered that when different olefins were mixed with pyrene,1-octene primarily underwent pyrolysis reactions,whereas cyclohexene mainly underwent hydrogen transfer reactions with pyrene and styrene,mostly producing superconjugated biradicals through condensation reactions with pyrene.In the mixture systems,the olefins scattered aromatic molecules,hindering the formation of pyrene trimers and higher polymers.According to the reactive molecular dynamics simulations,styrene may enhance the yield of dimer and enable the controlled polycondensation of pyrene.展开更多
Steam pretreatment is a widely used method for modifying the acidity and structure of zeolites,thereby enhancing their catalytic properties.This study systematically investigated the effects of steam treatment on ZSM-...Steam pretreatment is a widely used method for modifying the acidity and structure of zeolites,thereby enhancing their catalytic properties.This study systematically investigated the effects of steam treatment on ZSM-5 zeolites at varying treatment temperatures and durations.The structural evolution of the catalysts was monitored using N2 adsorptiondesorption,X-ray diffraction,inductively coupled plasma optical emission spectroscopy,scanning electron microscopy,NH3 temperature-programmed desorption,in situ pyridine infrared spectroscopy,and thermogravimetric analysis.The characterization results revealed that mesopores were introduced into the ZSM-5 zeolite catalysts through dealumination induced using steam treatment at moderate temperatures(400 and 500℃).Moreover,compared with the parent catalyst,the steam-treated catalysts exhibited a lower amount of acid sites and relative crystallinity,while the n(Si)/n(Al)ratio increased.In the co-conversion of methanol and n-hexane in a fixed bed reactor at 400℃and 0.5 MPa(N2 atmosphere),with a weight hourly space velocity of 1 h−1 and a stoichiometric ratio of 1:1(CH3OH to n-hexane),the steam-treated catalysts displayed a prolonged catalyst lifetime.Particularly,the parent zeolite had a lifetime of 96 h,while the catalyst treated at 500℃for 12 h had a lifetime of up to 240 h.Additionally,the steam-treated catalysts maintained stable n-hexane conversion and improved aromatic selectivity.Notably,these treated catalysts exhibited a lower deactivation rate than the parent catalyst,and would be conducive to industrial scale-up production.展开更多
Alkane coupling with CO_(2) by metal-containing zeolites catalysis is found to be a promising way to produce aromatics and syngas in recent years,but the real active sites and the role of CO_(2) are still unclear owin...Alkane coupling with CO_(2) by metal-containing zeolites catalysis is found to be a promising way to produce aromatics and syngas in recent years,but the real active sites and the role of CO_(2) are still unclear owing to the quick evolution of the metallic active sites and the complex reaction processes including direct propane aromatization,CO_(2) hydrogenation,reverse water-gas shift reaction,and propane-CO_(2) coupling aromatization.Herein,Ga/ZSM-5 catalysts were constructed to study the dynamic evolution of the metallic active sites and the role of CO_(2) during the propane and CO_(2) coupling reaction.After optimizing the reaction conditions,a notable propane conversion rate of 97.9%and an impressive aromatics selectivity of 80.6%in hydrocarbons can be achieved at the conditions of 550℃and CO_(2)/C_(3)H_(8) of 4.^(13)CO_(2)isotope experiments illustrate that C-atoms of CO_(2) can enter into CO(86.5%)and aromatics(10.8%)during the propane-CO_(2) coupling reaction process.In situ XANES and FTIR spectroscopies at 550℃and H_(2)/C_(3)H_(8) atmosphere reveal that GaO_(x) species can be gradually dispersed into[GaH_(2)]^(+)/[GaH]^(2+)on the Bronsted acid sites of ZSM-5 zeolite during H_(2) and/or C_(3)H_(8) treatment,which are the real active sites for propane-CO_(2) coupling conversion.In situ CO_(2)-FTIR experiments demonstrate that the[GaH_(2)]^(+)/[GaH]^(2+)species can react with CO_(2) and accelerate the propane and CO_(2) coupling process.This work not only presents a cost-effective avenue for CO_(2) utilization,but also contributes to the active site design for improved alkane and CO_(2) activation in coupling reaction system.展开更多
Catalyst containing shape selective zeolite is used to investigate the catalytic cracking characteristics of palm oil and three types of hydrocarbon VGOs on a fixed fluidized bed(FFB) unit. The advantage of producing ...Catalyst containing shape selective zeolite is used to investigate the catalytic cracking characteristics of palm oil and three types of hydrocarbon VGOs on a fixed fluidized bed(FFB) unit. The advantage of producing light olefins and light aromatics by catalytic cracking of plant oil is discussed. Results indicate that the hydrocarbyl group of the plant oil molecule is quite readily crackable; the C_6—C_8 aromatics yield is well above and the light olefins yield is about the same with the hydrocarbon feeds, while the yields of low value products are lower; the hydrocarbyl group of the plant oil molecule has strong tendency of aromatization, and can enter the zeolite pores to selectively form C_6—C_8 aromatics; during catalytic cracking of plant oil and fatty acids, a portion of the oxygen is removed in the form of water through hydrogen transfer reaction, while olefins are prevented from being saturated, which can ensure proper yields of both low-carbon olefins and light aromatics.展开更多
1-Butyl-3-methylimidazolium bromochloroaluminate ([bmim]Br-AlCl3) ionic liquid was used as an acid catalyst for removal of trace olefins from the aromatic hydrocarbons. The influence of various reaction parameters s...1-Butyl-3-methylimidazolium bromochloroaluminate ([bmim]Br-AlCl3) ionic liquid was used as an acid catalyst for removal of trace olefins from the aromatic hydrocarbons. The influence of various reaction parameters such as reaction time, temperature, dosage and acid strength of catalyst was investigated. The experimental results demonstrated that the ionic liquid exhibited excellent activity under mild reaction conditions, with the conversion of olefins reaching 98.84% and the bromine index of the aromatics varying from 1129 to 13. On the basis of the results obtained, thereof, a possible reaction mechanism was proposed.展开更多
Removal of trace olefins from aromatic liquids had been investigated in the presence of various ionic liquids like 1-ethyl-3-methylimidazoliurn bromochloroaluminate (EMIMBr-AlCl3), 1-butyl-3-methylimidazolium bromoc...Removal of trace olefins from aromatic liquids had been investigated in the presence of various ionic liquids like 1-ethyl-3-methylimidazoliurn bromochloroaluminate (EMIMBr-AlCl3), 1-butyl-3-methylimidazolium bromochloroaluminate (BMIMBr-AlCl3), l-hexyl-3-methylimidazolium bromochloroaluminate (HMIMBr-AlCl3), and 1-octyl-3-methylimidazolium bromochloroaluminate (OMIMBr-A1C13). It was found that the longer the alkyl chain of ionic liquid cations was, the higher the olefins conversion would be. OMIMBr-AlCl3 (with 0.67 molar fraction of AlCl3) had an obvious performance on olefins removal. The influences of various reaction parameters such as the dosage of catalyst, the reaction temperature, and the reaction time on the reaction catalyzed by OMIMBr-AlCl3 were investigated. Under optimum reaction conditions, a higher than 99% conversion of olefins was achieved. The preliminary results revealed that the process could save time, consume less energy, separate products easier, and cause less pollution to the environment.展开更多
A novel additive incorporated into the catalyst for removing trace olefins from aromatics was proposed, and under the laboratory conditions the lifetime of the catalyst was increased from 5 h to 8 h upon specifying th...A novel additive incorporated into the catalyst for removing trace olefins from aromatics was proposed, and under the laboratory conditions the lifetime of the catalyst was increased from 5 h to 8 h upon specifying the conversion of the olefins equating to more than 55% as a criterion. Catalyst production, which was named ROC, has been successfully scaled up from laboratory formulations to commercial scale manufacture and over 100 tons of catalyst had been produced. The superiority in catalytic activity was identified by the evaluation tests of the ROC catalyst based on whatever kind of feedstocks (with their bromine index ranging from 400 mgBr/100g to 1 200 mgBr/100g) being used as the feedstock. The X-ray diffraction patterns had verified that the additive was highly dispersed on the surface of catalyst; the GC-FID analysis results showed that the ROC catalyst could increase the xylene content; the pyridine-FTIR spectroscopic analyses suggested that the additive could increase the amount of the weak L acids, which was the main cause leading to enhancement of the catalyst activity.展开更多
On November 29,2013 the Shaanxi Coal Chemicals Technology Engineering Center,Ltd.(SCCTEC),the CNOOC Huizhou Refining and Chemical Company and the SINOPEC Luoyang Engineering Company,Ltd.signed an agreement on cooperat...On November 29,2013 the Shaanxi Coal Chemicals Technology Engineering Center,Ltd.(SCCTEC),the CNOOC Huizhou Refining and Chemical Company and the SINOPEC Luoyang Engineering Company,Ltd.signed an agreement on cooperation in development of展开更多
Light olefins are important organic building blocks in the chemicals industry.The main low-carbon olefin production methods,such as catalytic cracking and steam cracking,have considerable room for improvement in their...Light olefins are important organic building blocks in the chemicals industry.The main low-carbon olefin production methods,such as catalytic cracking and steam cracking,have considerable room for improvement in their utilization of hydrocarbons.This review provides a thorough overview of recent studies on catalytic cracking,steam cracking,and the conversion of crude oil processes.To maximize the production of light olefins and reduce carbon emissions,the perceived benefits of various technologies are examined.Taking olefin generation and conversion as a link to expand upstream and downstream processes,a targeted catalytic cracking to olefins(TCO)process is proposed to meet current demands for the transformation of oil refining into chemical production.The main innovations of this process include a multiple feedstock supply,the development of medium-sized catalysts,and a diameter-transformed fluidizedbed reactor with different feeding schemes.In combination with other chemical processes,TCO is expected to play a critical role in enabling petroleum refining and chemical processes to achieve low carbon dioxide emissions.展开更多
CO_(2)hydrogenation has been considered to be a highly promising route for the production of high-value olefins(HVOs)while also mitigating CO_(2)emissions.However,it is challenging to achieve high selectivity and main...CO_(2)hydrogenation has been considered to be a highly promising route for the production of high-value olefins(HVOs)while also mitigating CO_(2)emissions.However,it is challenging to achieve high selectivity and maintain stable performance for HVOs(ethylene,propylene,and linear a-olefins)over a prolonged reaction time due to the difficulty in precise control of carbon coupling and rapid catalyst deactivation.Herein,we present a selective Ba and Na co-modified Fe catalyst enriched with Fe_(5)C_(2)and Fe_(3)C active sites that can boost HVO synthesis with up to 66.1%selectivity at an average CO_(2)conversion of 38%for over 500 h.Compared to traditional NaFe catalyst,the combined effect of Ba and Na additives in the NaBaFe-0.5 catalyst suppressed excess oxidation of FeCxsites by H_(2)O.The absence of Fe3O4phase in the spent NaBaFe-0.5 catalyst reflects the stabilization effect of the co-modifiers on the FeCxsites.This study provides a strategy to design Fe-based catalysts that can be scaled up for the stable synthesis of HVOs from CO_(2)hydrogenation.展开更多
This study aims to analyze the influence of the polycyclic aromatic hydrocarbon(PAH)content in diesel on the physical and chemical properties of diesel soot particles.Four diesel fuels with different PAH content were ...This study aims to analyze the influence of the polycyclic aromatic hydrocarbon(PAH)content in diesel on the physical and chemical properties of diesel soot particles.Four diesel fuels with different PAH content were tested on a 11.6 L direct-injection diesel engine.The raw particulate matter(PM)before the after-treatment devices was collected using the thermophoresis sampling system and the filter sampling system.A transmission electron microscope and Raman spectrometer are used to analyze the physical properties of the soot particles,including morphology,primary particle size distribution,and graphitization degree.A Fourier transform infrared spectrometer and thermogravimetric analyzer are used to characterize the surface chemical composition and oxidation reactivity of soot particles,respectively.The results show that as the PAH content in the fuel decreases,the size of the primary soot particles decreases from 29.58 to 26.70 nm.The graphitization degree of soot particles first increases and then decreases,and the relative content of the aliphatic hydrocarbon functional groups of soot particles first decreases and then increases.The T_(10),T_(50),and T_(90) of soot from high-PAH fuel are 505.3,589.3,and 623.5℃,while those from low-PAH fuel are 480.1,557.5,and 599.2℃,respectively.This indicates that exhaust PM generated by the low-PAH fuel has poor oxidation reactivity.However,as the PAH content in fuel is further decreased,the excessively high cetane number may cause uneven mixing and incomplete combustion,leading to enhanced oxidation reactivity.展开更多
To obtain high yields of monocyclic aromatic hydrocarbons with methyl side chains,such as toluene and xylene,methane(CH_(4))can be introduced into the hydrocracking of polycyclic aromatic hydrocarbons.CH_(4)can partic...To obtain high yields of monocyclic aromatic hydrocarbons with methyl side chains,such as toluene and xylene,methane(CH_(4))can be introduced into the hydrocracking of polycyclic aromatic hydrocarbons.CH_(4)can participate in the reaction,supply methyl side chains to the product,and improve product distribution.In this study,the hydrogenation reaction of polycyclic aromatic hydrocarbons over a carbonized NiMo/Hβcatalyst in a CH_(4)and hydrogen(H_(2))environment was investigated to study the promotional effect of CH_(4)on the hydrocracking of polycyclic aromatics.Under conditions of 3.5 MPa,380℃,volume air velocity of 4 h^(-1),gas-oil volume ratio of 800,and H_(2):CH_(4)molar ratio of 1:1,the conversion rate of naphthalene was 99.97%,the liquid phase yield was 93.62%,and the selectivity of BTX were 17.76%,25.17%,and 20.47%,respectively.In comparison to the use of a H_(2)atmosphere,the selectivity of benzene was significantly decreased,whereas the selectivity of toluene and xylene were increased.It was shown that CH_(4)can participate in the hydrocracking of naphthalene and improve the selectivity of toluene and xylene in the liquid product.The carbonized NiMo/Hβcatalyst was characterized by a range of analytical methods(such as X-ray diffraction(XRD),ammonia-temperature-programmed desorption(NH3-TPD),hydrogen-temperature-programmed reduction(H_(2)-TPR),and X-ray photoelectron spectroscopy(XPS)).The results indicated that Ni and Mo carbides were the major species in the carbonized NiMo/Hβcatalyst and were considered to be active sites for the activation of CH_(4)and H_(2).After loading the metal components,the catalyst displayed prominent weak acidic sites,which may be suitable locations for cracking,alkylation,and other related reactions.Therefore,the carbonized NiMo/Hβcatalyst displayed multiple functions during the hydrocracking of polycyclic aromatic hydrocarbons in a CH_(4)and H_(2)environment.These results could be used to develop a new way to efficiently utilize polycyclic aromatic hydrocarbons and natural gas resources.展开更多
Direct conversion of syngas to aromatics(STA)over oxide-zeolite composite catalysts is promising as an alternative method for aromatics production.However,the structural effect of the oxide component in composite cata...Direct conversion of syngas to aromatics(STA)over oxide-zeolite composite catalysts is promising as an alternative method for aromatics production.However,the structural effect of the oxide component in composite catalysts is still ambiguous.Herein,we investigate the size effect by selecting ZnCr_(2)O_(4)spinel,as a probe oxide,mixing with H-ZSM-5 zeolite as a composite catalyst for STA reaction.The CO conversion,aromatics selectivity and space-time yield(STY)of aromatics are all significantly improved with the crystal size of ZnCr_(2)O_(4)oxide decreases,which can mainly attribute to the higher oxygen vacancy concentration and thus the rapid generation of more C1oxygenated intermediate species.Based on the understanding of the size-performance relationship,ZnCr_(2)O_(4)-400 with a smaller size mixing with H-ZSM-5 can achieve32.6%CO conversion with 76%aromatics selectivity.The STY of aromatics reaches as high as 4.79 mmol g_(cat)^(-1)h^(-1),which outperforms the previously reported some typical catalysts.This study elucidates the importance of regulating the size of oxide to design more efficient oxidezeolite composite catalysts for conversion of syngas to value-added chemicals.展开更多
The comprehensive characterization of heavy aromatic hydrocarbons in gasoline is important to optimize the blending process and understand the correlation between aromatics content and engine particulate emissions.How...The comprehensive characterization of heavy aromatic hydrocarbons in gasoline is important to optimize the blending process and understand the correlation between aromatics content and engine particulate emissions.However,most current analysis methods can only provide the composition of C_(8)/C_(8-) aromatics.In this study,a simple and fast gas chromatography-mass spectrometry(GC-MS)method to identify and quantify C_(9+)aromatics in gasoline was developed.A selected ion monitoring model was employed to eliminate interference from non-aromatic compounds in the detection of target compounds,as well as that between target compounds with different molecular formulas.The identification of C_(9+)aromatics was based on the retention time of model compounds,combined with characteristic mass fragment ions,boiling points,and retention indexes.Seventy-nine C_(9)–C_(12)aromatic compounds were quantified based on the calibration of representative model compounds,and the method demonstrated good linearity,and high accuracy and precision.Furthermore,the developed methodology was successfully applied to the analysis of gasoline fractions from the reforming,pyrolysis,straight-run,delayed coking,and catalytic cracking processes,as well as commercial gasolines.The results showed that C_(9)aromatics were the predominant aromatics in all gasoline samples,followed by C10 aromatics.Alkylbenzenes such as C_(9)H_(12)and C_(10)H_(14)were the main components in the reforming,straight-run,delayed coking,and catalytic cracking gasoline fractions,as well as in the commercial gasolines,in which 1,2,4-trimethylbenzene and 3-ethyltoluene were dominant;in contrast,aromatics with higher degrees of unsaturation such as indene were the most abundant aromatics in the pyrolysis gasoline fraction.展开更多
When converting C_(5) hydrocarbons to light olefins by catalytic pyrolysis,the generation of low value-added methane will affect the atomic utilization efficiency of C_(5) hydrocarbons.To improve the atomic utilizatio...When converting C_(5) hydrocarbons to light olefins by catalytic pyrolysis,the generation of low value-added methane will affect the atomic utilization efficiency of C_(5) hydrocarbons.To improve the atomic utilization efficiency,different generation pathways of light olefins and methane in the catalytic pyrolysis of C_(5) hydrocarbons were analyzed,and the effects of reaction conditions and zeolite types were inves-tigated.Results showed that light olefins were mainly formed by breaking the C_(2)-C_(3) bond in the middle position,while methane was formed by breaking the C_(1)-C_(2) bond at the end.Meanwhile,it was discovered that the hydrogen transfer reaction could be reduced by about 90%by selecting MTT zeolite with 1D topology and FER zeolite with 2D topology under high weight hourly space velocity(WHSV)and high temperature operations,thus leading to the improvement of the light olefins selectivity for the catalytic pyrolysis of n-pentane and 1-pentene to 55.12% and 74.60%,respectively.Moreover,the fraction ratio of terminal C_(1)-C_(2) bond cleavage was reduced,which would reduce the selectivity of methane to 6.63%and 1.83%.Therefore,zeolite with low hydrogen transfer activity and catalytic pyrolysis process with high WHsV will be conducive to maximize light olefins and to decrease methane.展开更多
Selective epoxidation of olefins is an important field in chemical industry.In this work,we developed a new phosphotungstic acid catalyst{[(C_8H_(17))(CH_(3))_(2)N]_(2)(CH_(2))_(3)}_(1.5){PO_(4)[WO(O_(2))_(2)]_(4)}wit...Selective epoxidation of olefins is an important field in chemical industry.In this work,we developed a new phosphotungstic acid catalyst{[(C_8H_(17))(CH_(3))_(2)N]_(2)(CH_(2))_(3)}_(1.5){PO_(4)[WO(O_(2))_(2)]_(4)}with long carbon chain and biquaternary ammonium cation.Cyclohexene could be epoxidized to cyclohexene oxide in 96.3%conversion and 98.2%selectivity.The catalyst type,solvent type,catalyst loading,initial molar ratio,temperature,cycle performance and substrate extensibility were studied and optimized,the kinetic parameters about overall reaction and unit reaction were also calculated.Dynamic light scattering analysis was carried out to explain the different catalytic performance between catalysts with different carbon chain length.This novel catalyst and the corresponding dynamics and mechanism study could probably help the industrial application on the epoxidation of cyclohexene with H_(2)O_(2).展开更多
Direct conversion of syngas to aromatics has great potential to decrease fossil fuel dependence.Here,a unique structured hybrid catalyst composed of Fe_(3)O_(4) nanoparticles intimately dispersed inside an acidic zeol...Direct conversion of syngas to aromatics has great potential to decrease fossil fuel dependence.Here,a unique structured hybrid catalyst composed of Fe_(3)O_(4) nanoparticles intimately dispersed inside an acidic zeolite is developed.1 to 4 nm sized Fe_(3)O_(4) nanoparticles end up evenly dispersed in an acidic and slightly mesoporous Al-ZSM-5 based on Fe_(3)O_(4) restructuring during co-hydro thermal synthesis using organosilane modification.A very high aromatic productivity of 214 mmolaromatics h^(-1) gFe^(-1) can be obtained with a remarkable 62%aromatic selectivity in hydrocarbons.This catalyst has excellent sintering resistance ability and maintains stable aromatics production over 570 h.The synthetic insights that postulate a mechanism for the metastable oxide-zeolite reorganization during hydrothermal synthesis could serve as a generic route to sinter-resistant oxide-zeolite composite materials with uniform,well-dispersed oxide nanoparticles in close intimacy with-and partially confined in-a zeolite matrix.展开更多
基金the financial support from the Strategic Priority Research Program of Chinese Academy of Sciences(XDA21010100)。
文摘Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However,the catalyst deactivation is an inevitable feature in MTO processes,and regeneration,therefore,is one of the key steps in industrial MTO processes.Traditionally the MTO catalyst is regenerated by removing the deposited coke via air combustion,which unavoidably transforms coke into carbon dioxide and reduces the carbon utilization efficiency.Recent study shows that the coke species over MTO catalyst can be regenerated via steam,which can promote the light olefins yield as the deactivated coke species can be essentially transferred to industrially useful synthesis gas,is a promising pathway for further MTO processes development.In this work,we modelled and analyzed these two MTO regeneration methods in terms of carbon utilization efficiency and technology economics.As shown,the steam regeneration could achieve a carbon utilization efficiency of 84.31%,compared to 74.74%for air combustion regeneration.The MTO processes using steam regeneration can essentially achieve the near-zero carbon emission.In addition,light olefins production of the MTO processes using steam regeneration is 12.81%higher than that using air combustion regeneration.In this regard,steam regeneration could be considered as a potential yet promising regeneration method for further MTO processes,showing not only great environmental benefits but also competitive economic performance.
基金supported by the National Natural Science Foundation of China(22125802,22078010).
文摘The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and their performances in the separation of 1,2,3,4-tetrahydronaphthalene(tetralin)/dodecane and tetralin/decalin systems were studied.Among these ionic liquids,1-ethyl-3-methylimidazolium tetrachloroferrate([EMIM][FeCl_(4)])with the highest selectivity was used as the extractant.Density functional theory calculations showed that[EMIM][FeCl_(4)]interacted more strongly with tetralin than with dodecane and decalin.Energy decomposition analysis of[EMIM][FeCl_(4)]-tetralin indicated that electrostatics and dispersion played essential roles,and induction cannot be neglected.The van der Waals forces was a main effect in[EMIM][FeCl_(4)]-tetralin by independent gradient model analysis.The tetralin distribution coefficient and selectivity were 0.8 and 110,respectively,with 10%(mol)tetralin in the initial tetralin/dodecane system,and 0.67 and 19.5,respectively,with 10%(mol)tetralin in the initial tetralin/decalin system.The selectivity increased with decreasing alkyl chain length of the extractant.The influence of the extraction temperature,extractant dosage,and initial concentrations of the system components on the separation performance were studied.Recycling experiments showed that the regenerated[EMIM][FeCl_(4)]could be used repeatedly.
基金financially supported by the National Natural Science Foundation of China(Approval No.42172168).
文摘In order to obtain liquefied products with higher yields of aromatic molecules to produce mesophase pitch,a good understanding of the relevant reaction mechanisms is required.Reactive molecular dynamics simulations were used to study the thermal reactions of pyrene,1-methylpyrene,7,8,9,10-tetrahydrobenzopyrene,and mixtures of pyrene with 1-octene,cyclohexene,or styrene.The reactant conversion rates,reaction rates,and product distributions were calculated and compared,and the mechanisms were analyzed and discussed.The results demonstrated that methyl and naphthenic structures in aromatics might improve the conversion rates of reactants in hydrogen transfer processes,but their steric hindrances prohibited the generation of high polymers.The naphthenic structures could generate more free radicals and presented a more obvious inhibition effect on the condensation of polymers compared with the methyl side chains.It was discovered that when different olefins were mixed with pyrene,1-octene primarily underwent pyrolysis reactions,whereas cyclohexene mainly underwent hydrogen transfer reactions with pyrene and styrene,mostly producing superconjugated biradicals through condensation reactions with pyrene.In the mixture systems,the olefins scattered aromatic molecules,hindering the formation of pyrene trimers and higher polymers.According to the reactive molecular dynamics simulations,styrene may enhance the yield of dimer and enable the controlled polycondensation of pyrene.
基金We gratefully acknowledge financial support from the National Nature Science Foundation of China(2177606)PetroChina(Development of methanol coupled light hydrocarbon aromatization catalyst and process technology,2016A-24308).
文摘Steam pretreatment is a widely used method for modifying the acidity and structure of zeolites,thereby enhancing their catalytic properties.This study systematically investigated the effects of steam treatment on ZSM-5 zeolites at varying treatment temperatures and durations.The structural evolution of the catalysts was monitored using N2 adsorptiondesorption,X-ray diffraction,inductively coupled plasma optical emission spectroscopy,scanning electron microscopy,NH3 temperature-programmed desorption,in situ pyridine infrared spectroscopy,and thermogravimetric analysis.The characterization results revealed that mesopores were introduced into the ZSM-5 zeolite catalysts through dealumination induced using steam treatment at moderate temperatures(400 and 500℃).Moreover,compared with the parent catalyst,the steam-treated catalysts exhibited a lower amount of acid sites and relative crystallinity,while the n(Si)/n(Al)ratio increased.In the co-conversion of methanol and n-hexane in a fixed bed reactor at 400℃and 0.5 MPa(N2 atmosphere),with a weight hourly space velocity of 1 h−1 and a stoichiometric ratio of 1:1(CH3OH to n-hexane),the steam-treated catalysts displayed a prolonged catalyst lifetime.Particularly,the parent zeolite had a lifetime of 96 h,while the catalyst treated at 500℃for 12 h had a lifetime of up to 240 h.Additionally,the steam-treated catalysts maintained stable n-hexane conversion and improved aromatic selectivity.Notably,these treated catalysts exhibited a lower deactivation rate than the parent catalyst,and would be conducive to industrial scale-up production.
基金supported by the National Key Research and Development Program of China (No.2022YFE0116000)the National Natural Science Foundation of China (No.22288101,21991092,21991090,22202193,and 22172166)+1 种基金the Youth Innovation Promotion Association CAS (2021182)the Innovation Research Foundation of Dalian Institute of Chemical Physics,Chinese Academy of Sciences (DICP I202429 and I202217)。
文摘Alkane coupling with CO_(2) by metal-containing zeolites catalysis is found to be a promising way to produce aromatics and syngas in recent years,but the real active sites and the role of CO_(2) are still unclear owing to the quick evolution of the metallic active sites and the complex reaction processes including direct propane aromatization,CO_(2) hydrogenation,reverse water-gas shift reaction,and propane-CO_(2) coupling aromatization.Herein,Ga/ZSM-5 catalysts were constructed to study the dynamic evolution of the metallic active sites and the role of CO_(2) during the propane and CO_(2) coupling reaction.After optimizing the reaction conditions,a notable propane conversion rate of 97.9%and an impressive aromatics selectivity of 80.6%in hydrocarbons can be achieved at the conditions of 550℃and CO_(2)/C_(3)H_(8) of 4.^(13)CO_(2)isotope experiments illustrate that C-atoms of CO_(2) can enter into CO(86.5%)and aromatics(10.8%)during the propane-CO_(2) coupling reaction process.In situ XANES and FTIR spectroscopies at 550℃and H_(2)/C_(3)H_(8) atmosphere reveal that GaO_(x) species can be gradually dispersed into[GaH_(2)]^(+)/[GaH]^(2+)on the Bronsted acid sites of ZSM-5 zeolite during H_(2) and/or C_(3)H_(8) treatment,which are the real active sites for propane-CO_(2) coupling conversion.In situ CO_(2)-FTIR experiments demonstrate that the[GaH_(2)]^(+)/[GaH]^(2+)species can react with CO_(2) and accelerate the propane and CO_(2) coupling process.This work not only presents a cost-effective avenue for CO_(2) utilization,but also contributes to the active site design for improved alkane and CO_(2) activation in coupling reaction system.
基金financially supported by the SINOPEC Research and Development Project (Contact No. 115010)
文摘Catalyst containing shape selective zeolite is used to investigate the catalytic cracking characteristics of palm oil and three types of hydrocarbon VGOs on a fixed fluidized bed(FFB) unit. The advantage of producing light olefins and light aromatics by catalytic cracking of plant oil is discussed. Results indicate that the hydrocarbyl group of the plant oil molecule is quite readily crackable; the C_6—C_8 aromatics yield is well above and the light olefins yield is about the same with the hydrocarbon feeds, while the yields of low value products are lower; the hydrocarbyl group of the plant oil molecule has strong tendency of aromatization, and can enter the zeolite pores to selectively form C_6—C_8 aromatics; during catalytic cracking of plant oil and fatty acids, a portion of the oxygen is removed in the form of water through hydrogen transfer reaction, while olefins are prevented from being saturated, which can ensure proper yields of both low-carbon olefins and light aromatics.
基金the Sinopec Zhenhai Refining & Chemical Company for financial support
文摘1-Butyl-3-methylimidazolium bromochloroaluminate ([bmim]Br-AlCl3) ionic liquid was used as an acid catalyst for removal of trace olefins from the aromatic hydrocarbons. The influence of various reaction parameters such as reaction time, temperature, dosage and acid strength of catalyst was investigated. The experimental results demonstrated that the ionic liquid exhibited excellent activity under mild reaction conditions, with the conversion of olefins reaching 98.84% and the bromine index of the aromatics varying from 1129 to 13. On the basis of the results obtained, thereof, a possible reaction mechanism was proposed.
文摘Removal of trace olefins from aromatic liquids had been investigated in the presence of various ionic liquids like 1-ethyl-3-methylimidazoliurn bromochloroaluminate (EMIMBr-AlCl3), 1-butyl-3-methylimidazolium bromochloroaluminate (BMIMBr-AlCl3), l-hexyl-3-methylimidazolium bromochloroaluminate (HMIMBr-AlCl3), and 1-octyl-3-methylimidazolium bromochloroaluminate (OMIMBr-A1C13). It was found that the longer the alkyl chain of ionic liquid cations was, the higher the olefins conversion would be. OMIMBr-AlCl3 (with 0.67 molar fraction of AlCl3) had an obvious performance on olefins removal. The influences of various reaction parameters such as the dosage of catalyst, the reaction temperature, and the reaction time on the reaction catalyzed by OMIMBr-AlCl3 were investigated. Under optimum reaction conditions, a higher than 99% conversion of olefins was achieved. The preliminary results revealed that the process could save time, consume less energy, separate products easier, and cause less pollution to the environment.
文摘A novel additive incorporated into the catalyst for removing trace olefins from aromatics was proposed, and under the laboratory conditions the lifetime of the catalyst was increased from 5 h to 8 h upon specifying the conversion of the olefins equating to more than 55% as a criterion. Catalyst production, which was named ROC, has been successfully scaled up from laboratory formulations to commercial scale manufacture and over 100 tons of catalyst had been produced. The superiority in catalytic activity was identified by the evaluation tests of the ROC catalyst based on whatever kind of feedstocks (with their bromine index ranging from 400 mgBr/100g to 1 200 mgBr/100g) being used as the feedstock. The X-ray diffraction patterns had verified that the additive was highly dispersed on the surface of catalyst; the GC-FID analysis results showed that the ROC catalyst could increase the xylene content; the pyridine-FTIR spectroscopic analyses suggested that the additive could increase the amount of the weak L acids, which was the main cause leading to enhancement of the catalyst activity.
文摘On November 29,2013 the Shaanxi Coal Chemicals Technology Engineering Center,Ltd.(SCCTEC),the CNOOC Huizhou Refining and Chemical Company and the SINOPEC Luoyang Engineering Company,Ltd.signed an agreement on cooperation in development of
基金financially supported by a research grant from the National Key Research and Development Program of China(2021YFA1501204)China Petroleum and Chemical Corporation(Sinopec Corp.),China(ST22001)。
文摘Light olefins are important organic building blocks in the chemicals industry.The main low-carbon olefin production methods,such as catalytic cracking and steam cracking,have considerable room for improvement in their utilization of hydrocarbons.This review provides a thorough overview of recent studies on catalytic cracking,steam cracking,and the conversion of crude oil processes.To maximize the production of light olefins and reduce carbon emissions,the perceived benefits of various technologies are examined.Taking olefin generation and conversion as a link to expand upstream and downstream processes,a targeted catalytic cracking to olefins(TCO)process is proposed to meet current demands for the transformation of oil refining into chemical production.The main innovations of this process include a multiple feedstock supply,the development of medium-sized catalysts,and a diameter-transformed fluidizedbed reactor with different feeding schemes.In combination with other chemical processes,TCO is expected to play a critical role in enabling petroleum refining and chemical processes to achieve low carbon dioxide emissions.
基金supported by the National Natural Science Foundation of China(21802138,21773234 and 22078315)the‘‘Transformational Technologies for Clean Energy and Demonstration’’,Strategic Priority Research Program of the Chinese Academy of Sciences(XDA 21090203)+3 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(2020189)the Natural Science Foundation of Liaoning Province(2022-MS-027)the Youth Science and Technology Star Project Support Program of Dalian City(2021RQ123),DICP(Grant:DICP I202138)the University of Chinese Academy of Sciences(UCAS)for UCAS Scholarship。
文摘CO_(2)hydrogenation has been considered to be a highly promising route for the production of high-value olefins(HVOs)while also mitigating CO_(2)emissions.However,it is challenging to achieve high selectivity and maintain stable performance for HVOs(ethylene,propylene,and linear a-olefins)over a prolonged reaction time due to the difficulty in precise control of carbon coupling and rapid catalyst deactivation.Herein,we present a selective Ba and Na co-modified Fe catalyst enriched with Fe_(5)C_(2)and Fe_(3)C active sites that can boost HVO synthesis with up to 66.1%selectivity at an average CO_(2)conversion of 38%for over 500 h.Compared to traditional NaFe catalyst,the combined effect of Ba and Na additives in the NaBaFe-0.5 catalyst suppressed excess oxidation of FeCxsites by H_(2)O.The absence of Fe3O4phase in the spent NaBaFe-0.5 catalyst reflects the stabilization effect of the co-modifiers on the FeCxsites.This study provides a strategy to design Fe-based catalysts that can be scaled up for the stable synthesis of HVOs from CO_(2)hydrogenation.
基金National Key Research and Development Program of China(2017YFB0306605)Key Laboratory of Engines at Tianjin University(Grant No.K2022-06).
文摘This study aims to analyze the influence of the polycyclic aromatic hydrocarbon(PAH)content in diesel on the physical and chemical properties of diesel soot particles.Four diesel fuels with different PAH content were tested on a 11.6 L direct-injection diesel engine.The raw particulate matter(PM)before the after-treatment devices was collected using the thermophoresis sampling system and the filter sampling system.A transmission electron microscope and Raman spectrometer are used to analyze the physical properties of the soot particles,including morphology,primary particle size distribution,and graphitization degree.A Fourier transform infrared spectrometer and thermogravimetric analyzer are used to characterize the surface chemical composition and oxidation reactivity of soot particles,respectively.The results show that as the PAH content in the fuel decreases,the size of the primary soot particles decreases from 29.58 to 26.70 nm.The graphitization degree of soot particles first increases and then decreases,and the relative content of the aliphatic hydrocarbon functional groups of soot particles first decreases and then increases.The T_(10),T_(50),and T_(90) of soot from high-PAH fuel are 505.3,589.3,and 623.5℃,while those from low-PAH fuel are 480.1,557.5,and 599.2℃,respectively.This indicates that exhaust PM generated by the low-PAH fuel has poor oxidation reactivity.However,as the PAH content in fuel is further decreased,the excessively high cetane number may cause uneven mixing and incomplete combustion,leading to enhanced oxidation reactivity.
基金the financial support from the Graduate Student Innovation and Practical Ability Training Program of Xi’an Shiyou University (No. YCS21212111)Open Fund Project of the State Key Laboratory of Heavy Oil, China (SKLHOP201703)+3 种基金National Natural Science Foundation of China (No. 52274039)Natural Science Foundation of Shaanxi Provincial Department of Education (Grant 2023-JC-YB-414)Natural Science Foundation of Shaanxi Province in China (No. 2022JZ-28)the Open Fund Project of the National Oil Shale Exploitation Research and Development Center, China (No. 33550022-ZC0613-0255)
文摘To obtain high yields of monocyclic aromatic hydrocarbons with methyl side chains,such as toluene and xylene,methane(CH_(4))can be introduced into the hydrocracking of polycyclic aromatic hydrocarbons.CH_(4)can participate in the reaction,supply methyl side chains to the product,and improve product distribution.In this study,the hydrogenation reaction of polycyclic aromatic hydrocarbons over a carbonized NiMo/Hβcatalyst in a CH_(4)and hydrogen(H_(2))environment was investigated to study the promotional effect of CH_(4)on the hydrocracking of polycyclic aromatics.Under conditions of 3.5 MPa,380℃,volume air velocity of 4 h^(-1),gas-oil volume ratio of 800,and H_(2):CH_(4)molar ratio of 1:1,the conversion rate of naphthalene was 99.97%,the liquid phase yield was 93.62%,and the selectivity of BTX were 17.76%,25.17%,and 20.47%,respectively.In comparison to the use of a H_(2)atmosphere,the selectivity of benzene was significantly decreased,whereas the selectivity of toluene and xylene were increased.It was shown that CH_(4)can participate in the hydrocracking of naphthalene and improve the selectivity of toluene and xylene in the liquid product.The carbonized NiMo/Hβcatalyst was characterized by a range of analytical methods(such as X-ray diffraction(XRD),ammonia-temperature-programmed desorption(NH3-TPD),hydrogen-temperature-programmed reduction(H_(2)-TPR),and X-ray photoelectron spectroscopy(XPS)).The results indicated that Ni and Mo carbides were the major species in the carbonized NiMo/Hβcatalyst and were considered to be active sites for the activation of CH_(4)and H_(2).After loading the metal components,the catalyst displayed prominent weak acidic sites,which may be suitable locations for cracking,alkylation,and other related reactions.Therefore,the carbonized NiMo/Hβcatalyst displayed multiple functions during the hydrocracking of polycyclic aromatic hydrocarbons in a CH_(4)and H_(2)environment.These results could be used to develop a new way to efficiently utilize polycyclic aromatic hydrocarbons and natural gas resources.
基金financial support from the National Natural Science Foundation of China(Grant No.21978285,21991093,21991090)the“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21030100)。
文摘Direct conversion of syngas to aromatics(STA)over oxide-zeolite composite catalysts is promising as an alternative method for aromatics production.However,the structural effect of the oxide component in composite catalysts is still ambiguous.Herein,we investigate the size effect by selecting ZnCr_(2)O_(4)spinel,as a probe oxide,mixing with H-ZSM-5 zeolite as a composite catalyst for STA reaction.The CO conversion,aromatics selectivity and space-time yield(STY)of aromatics are all significantly improved with the crystal size of ZnCr_(2)O_(4)oxide decreases,which can mainly attribute to the higher oxygen vacancy concentration and thus the rapid generation of more C1oxygenated intermediate species.Based on the understanding of the size-performance relationship,ZnCr_(2)O_(4)-400 with a smaller size mixing with H-ZSM-5 can achieve32.6%CO conversion with 76%aromatics selectivity.The STY of aromatics reaches as high as 4.79 mmol g_(cat)^(-1)h^(-1),which outperforms the previously reported some typical catalysts.This study elucidates the importance of regulating the size of oxide to design more efficient oxidezeolite composite catalysts for conversion of syngas to value-added chemicals.
基金This work was supported by the research project of Sinopec Research Institute of Petroleum Processing Co.,Ltd.(G720007).
文摘The comprehensive characterization of heavy aromatic hydrocarbons in gasoline is important to optimize the blending process and understand the correlation between aromatics content and engine particulate emissions.However,most current analysis methods can only provide the composition of C_(8)/C_(8-) aromatics.In this study,a simple and fast gas chromatography-mass spectrometry(GC-MS)method to identify and quantify C_(9+)aromatics in gasoline was developed.A selected ion monitoring model was employed to eliminate interference from non-aromatic compounds in the detection of target compounds,as well as that between target compounds with different molecular formulas.The identification of C_(9+)aromatics was based on the retention time of model compounds,combined with characteristic mass fragment ions,boiling points,and retention indexes.Seventy-nine C_(9)–C_(12)aromatic compounds were quantified based on the calibration of representative model compounds,and the method demonstrated good linearity,and high accuracy and precision.Furthermore,the developed methodology was successfully applied to the analysis of gasoline fractions from the reforming,pyrolysis,straight-run,delayed coking,and catalytic cracking processes,as well as commercial gasolines.The results showed that C_(9)aromatics were the predominant aromatics in all gasoline samples,followed by C10 aromatics.Alkylbenzenes such as C_(9)H_(12)and C_(10)H_(14)were the main components in the reforming,straight-run,delayed coking,and catalytic cracking gasoline fractions,as well as in the commercial gasolines,in which 1,2,4-trimethylbenzene and 3-ethyltoluene were dominant;in contrast,aromatics with higher degrees of unsaturation such as indene were the most abundant aromatics in the pyrolysis gasoline fraction.
基金supported by Program of China National Petroleum Corporation(2020B-20122022zS27)the General Program of National Natural Science Foundation of China(22178385).
文摘When converting C_(5) hydrocarbons to light olefins by catalytic pyrolysis,the generation of low value-added methane will affect the atomic utilization efficiency of C_(5) hydrocarbons.To improve the atomic utilization efficiency,different generation pathways of light olefins and methane in the catalytic pyrolysis of C_(5) hydrocarbons were analyzed,and the effects of reaction conditions and zeolite types were inves-tigated.Results showed that light olefins were mainly formed by breaking the C_(2)-C_(3) bond in the middle position,while methane was formed by breaking the C_(1)-C_(2) bond at the end.Meanwhile,it was discovered that the hydrogen transfer reaction could be reduced by about 90%by selecting MTT zeolite with 1D topology and FER zeolite with 2D topology under high weight hourly space velocity(WHSV)and high temperature operations,thus leading to the improvement of the light olefins selectivity for the catalytic pyrolysis of n-pentane and 1-pentene to 55.12% and 74.60%,respectively.Moreover,the fraction ratio of terminal C_(1)-C_(2) bond cleavage was reduced,which would reduce the selectivity of methane to 6.63%and 1.83%.Therefore,zeolite with low hydrogen transfer activity and catalytic pyrolysis process with high WHsV will be conducive to maximize light olefins and to decrease methane.
基金supported by Natural Science Foundation of Jiangsu Province(BK20210185)National Natural Science Foundation of China(21776122)。
文摘Selective epoxidation of olefins is an important field in chemical industry.In this work,we developed a new phosphotungstic acid catalyst{[(C_8H_(17))(CH_(3))_(2)N]_(2)(CH_(2))_(3)}_(1.5){PO_(4)[WO(O_(2))_(2)]_(4)}with long carbon chain and biquaternary ammonium cation.Cyclohexene could be epoxidized to cyclohexene oxide in 96.3%conversion and 98.2%selectivity.The catalyst type,solvent type,catalyst loading,initial molar ratio,temperature,cycle performance and substrate extensibility were studied and optimized,the kinetic parameters about overall reaction and unit reaction were also calculated.Dynamic light scattering analysis was carried out to explain the different catalytic performance between catalysts with different carbon chain length.This novel catalyst and the corresponding dynamics and mechanism study could probably help the industrial application on the epoxidation of cyclohexene with H_(2)O_(2).
基金supported financially by the National Natural Science Foundation of China(51776206)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01N092)+4 种基金the National Key R&D Program of China(2018YFB1501504)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX20_0095)the Fundamental Research Funds for the Central Universities(3203002104D)the Research Foundation-Flanders(FWO,grant 12E8617N)for funding and KU Leuven grant C14/20/086visiting scholar(2017-20202)at the Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences。
文摘Direct conversion of syngas to aromatics has great potential to decrease fossil fuel dependence.Here,a unique structured hybrid catalyst composed of Fe_(3)O_(4) nanoparticles intimately dispersed inside an acidic zeolite is developed.1 to 4 nm sized Fe_(3)O_(4) nanoparticles end up evenly dispersed in an acidic and slightly mesoporous Al-ZSM-5 based on Fe_(3)O_(4) restructuring during co-hydro thermal synthesis using organosilane modification.A very high aromatic productivity of 214 mmolaromatics h^(-1) gFe^(-1) can be obtained with a remarkable 62%aromatic selectivity in hydrocarbons.This catalyst has excellent sintering resistance ability and maintains stable aromatics production over 570 h.The synthetic insights that postulate a mechanism for the metastable oxide-zeolite reorganization during hydrothermal synthesis could serve as a generic route to sinter-resistant oxide-zeolite composite materials with uniform,well-dispersed oxide nanoparticles in close intimacy with-and partially confined in-a zeolite matrix.