期刊文献+
共找到18,323篇文章
< 1 2 250 >
每页显示 20 50 100
Modeling and analysis of air combustion and steam regeneration in methanol to olefins processes
1
作者 Jinqiang Liang Danzhu Liu +1 位作者 Shuliang Xu Mao Ye 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期94-103,共10页
Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However... Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However,the catalyst deactivation is an inevitable feature in MTO processes,and regeneration,therefore,is one of the key steps in industrial MTO processes.Traditionally the MTO catalyst is regenerated by removing the deposited coke via air combustion,which unavoidably transforms coke into carbon dioxide and reduces the carbon utilization efficiency.Recent study shows that the coke species over MTO catalyst can be regenerated via steam,which can promote the light olefins yield as the deactivated coke species can be essentially transferred to industrially useful synthesis gas,is a promising pathway for further MTO processes development.In this work,we modelled and analyzed these two MTO regeneration methods in terms of carbon utilization efficiency and technology economics.As shown,the steam regeneration could achieve a carbon utilization efficiency of 84.31%,compared to 74.74%for air combustion regeneration.The MTO processes using steam regeneration can essentially achieve the near-zero carbon emission.In addition,light olefins production of the MTO processes using steam regeneration is 12.81%higher than that using air combustion regeneration.In this regard,steam regeneration could be considered as a potential yet promising regeneration method for further MTO processes,showing not only great environmental benefits but also competitive economic performance. 展开更多
关键词 Model Methanol to olefins REGENERATION Greenhouse gas Processes simulation
下载PDF
Highly selective extraction of aromatics from aliphatics by using metal chloride-based ionic liquids
2
作者 Hui Yu Xiaojia Wu +4 位作者 Chuanqi Geng Xinyu Li Chencan Du Zhiyong Zhou Zhongqi Ren 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期222-229,共8页
The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and... The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and their performances in the separation of 1,2,3,4-tetrahydronaphthalene(tetralin)/dodecane and tetralin/decalin systems were studied.Among these ionic liquids,1-ethyl-3-methylimidazolium tetrachloroferrate([EMIM][FeCl_(4)])with the highest selectivity was used as the extractant.Density functional theory calculations showed that[EMIM][FeCl_(4)]interacted more strongly with tetralin than with dodecane and decalin.Energy decomposition analysis of[EMIM][FeCl_(4)]-tetralin indicated that electrostatics and dispersion played essential roles,and induction cannot be neglected.The van der Waals forces was a main effect in[EMIM][FeCl_(4)]-tetralin by independent gradient model analysis.The tetralin distribution coefficient and selectivity were 0.8 and 110,respectively,with 10%(mol)tetralin in the initial tetralin/dodecane system,and 0.67 and 19.5,respectively,with 10%(mol)tetralin in the initial tetralin/decalin system.The selectivity increased with decreasing alkyl chain length of the extractant.The influence of the extraction temperature,extractant dosage,and initial concentrations of the system components on the separation performance were studied.Recycling experiments showed that the regenerated[EMIM][FeCl_(4)]could be used repeatedly. 展开更多
关键词 Ionic liquid aromatic hydrocarbon Aliphatic hydrocarbon Extraction
下载PDF
Controllable Condensation of Aromatics and Its Mechanisms in Carbonization
3
作者 Fan Xi Wang Chunlu +3 位作者 Luo Yang Ren Qiang Shen Haiping Long Jun 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期34-46,共13页
In order to obtain liquefied products with higher yields of aromatic molecules to produce mesophase pitch,a good understanding of the relevant reaction mechanisms is required.Reactive molecular dynamics simulations we... In order to obtain liquefied products with higher yields of aromatic molecules to produce mesophase pitch,a good understanding of the relevant reaction mechanisms is required.Reactive molecular dynamics simulations were used to study the thermal reactions of pyrene,1-methylpyrene,7,8,9,10-tetrahydrobenzopyrene,and mixtures of pyrene with 1-octene,cyclohexene,or styrene.The reactant conversion rates,reaction rates,and product distributions were calculated and compared,and the mechanisms were analyzed and discussed.The results demonstrated that methyl and naphthenic structures in aromatics might improve the conversion rates of reactants in hydrogen transfer processes,but their steric hindrances prohibited the generation of high polymers.The naphthenic structures could generate more free radicals and presented a more obvious inhibition effect on the condensation of polymers compared with the methyl side chains.It was discovered that when different olefins were mixed with pyrene,1-octene primarily underwent pyrolysis reactions,whereas cyclohexene mainly underwent hydrogen transfer reactions with pyrene and styrene,mostly producing superconjugated biradicals through condensation reactions with pyrene.In the mixture systems,the olefins scattered aromatic molecules,hindering the formation of pyrene trimers and higher polymers.According to the reactive molecular dynamics simulations,styrene may enhance the yield of dimer and enable the controlled polycondensation of pyrene. 展开更多
关键词 CARBONIZATION controllable condensation aromatics MECHANISMS molecular simulation
下载PDF
Effect of Steam Treatment on the Catalytic Performance of ZSM-5 in the Co-conversion of Methanol and n-Hexane to Aromatics
4
作者 Wei Shumei Xu Yarong +2 位作者 Yang Fan Zhu Kake Zhu Xuedong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第3期73-81,共9页
Steam pretreatment is a widely used method for modifying the acidity and structure of zeolites,thereby enhancing their catalytic properties.This study systematically investigated the effects of steam treatment on ZSM-... Steam pretreatment is a widely used method for modifying the acidity and structure of zeolites,thereby enhancing their catalytic properties.This study systematically investigated the effects of steam treatment on ZSM-5 zeolites at varying treatment temperatures and durations.The structural evolution of the catalysts was monitored using N2 adsorptiondesorption,X-ray diffraction,inductively coupled plasma optical emission spectroscopy,scanning electron microscopy,NH3 temperature-programmed desorption,in situ pyridine infrared spectroscopy,and thermogravimetric analysis.The characterization results revealed that mesopores were introduced into the ZSM-5 zeolite catalysts through dealumination induced using steam treatment at moderate temperatures(400 and 500℃).Moreover,compared with the parent catalyst,the steam-treated catalysts exhibited a lower amount of acid sites and relative crystallinity,while the n(Si)/n(Al)ratio increased.In the co-conversion of methanol and n-hexane in a fixed bed reactor at 400℃and 0.5 MPa(N2 atmosphere),with a weight hourly space velocity of 1 h−1 and a stoichiometric ratio of 1:1(CH3OH to n-hexane),the steam-treated catalysts displayed a prolonged catalyst lifetime.Particularly,the parent zeolite had a lifetime of 96 h,while the catalyst treated at 500℃for 12 h had a lifetime of up to 240 h.Additionally,the steam-treated catalysts maintained stable n-hexane conversion and improved aromatic selectivity.Notably,these treated catalysts exhibited a lower deactivation rate than the parent catalyst,and would be conducive to industrial scale-up production. 展开更多
关键词 steam ZSM-5 zeolites co-conversion aromatIZATION METHANOL N-HEXANE
下载PDF
The dynamic catalysis of Ga/ZSM-5 catalysts for propane-CO_(2) coupling conversion to aromatics and syngas
5
作者 Yonggui Song Zhong-Pan Hu +12 位作者 Haohao Feng Enze Chen Le Lv Yimo Wu Zhen Liu Yong Jiang Xiaozhi Su Feifei Xu Mingchang Zhu Jingfeng Han Yingxu Wei Svetlana Mintova Zhongmin Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期513-519,I0011,共8页
Alkane coupling with CO_(2) by metal-containing zeolites catalysis is found to be a promising way to produce aromatics and syngas in recent years,but the real active sites and the role of CO_(2) are still unclear owin... Alkane coupling with CO_(2) by metal-containing zeolites catalysis is found to be a promising way to produce aromatics and syngas in recent years,but the real active sites and the role of CO_(2) are still unclear owing to the quick evolution of the metallic active sites and the complex reaction processes including direct propane aromatization,CO_(2) hydrogenation,reverse water-gas shift reaction,and propane-CO_(2) coupling aromatization.Herein,Ga/ZSM-5 catalysts were constructed to study the dynamic evolution of the metallic active sites and the role of CO_(2) during the propane and CO_(2) coupling reaction.After optimizing the reaction conditions,a notable propane conversion rate of 97.9%and an impressive aromatics selectivity of 80.6%in hydrocarbons can be achieved at the conditions of 550℃and CO_(2)/C_(3)H_(8) of 4.^(13)CO_(2)isotope experiments illustrate that C-atoms of CO_(2) can enter into CO(86.5%)and aromatics(10.8%)during the propane-CO_(2) coupling reaction process.In situ XANES and FTIR spectroscopies at 550℃and H_(2)/C_(3)H_(8) atmosphere reveal that GaO_(x) species can be gradually dispersed into[GaH_(2)]^(+)/[GaH]^(2+)on the Bronsted acid sites of ZSM-5 zeolite during H_(2) and/or C_(3)H_(8) treatment,which are the real active sites for propane-CO_(2) coupling conversion.In situ CO_(2)-FTIR experiments demonstrate that the[GaH_(2)]^(+)/[GaH]^(2+)species can react with CO_(2) and accelerate the propane and CO_(2) coupling process.This work not only presents a cost-effective avenue for CO_(2) utilization,but also contributes to the active site design for improved alkane and CO_(2) activation in coupling reaction system. 展开更多
关键词 Carbon dioxide Propane aromatization Ga/ZSM-5 Gallium hydride Spectroscopy
下载PDF
Catalytic Cracking Characteristics of Plant Oil for Producing Light Olefins and Light Aromatics
6
作者 Cheng Xiaojie 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2019年第1期55-61,共7页
Catalyst containing shape selective zeolite is used to investigate the catalytic cracking characteristics of palm oil and three types of hydrocarbon VGOs on a fixed fluidized bed(FFB) unit. The advantage of producing ... Catalyst containing shape selective zeolite is used to investigate the catalytic cracking characteristics of palm oil and three types of hydrocarbon VGOs on a fixed fluidized bed(FFB) unit. The advantage of producing light olefins and light aromatics by catalytic cracking of plant oil is discussed. Results indicate that the hydrocarbyl group of the plant oil molecule is quite readily crackable; the C_6—C_8 aromatics yield is well above and the light olefins yield is about the same with the hydrocarbon feeds, while the yields of low value products are lower; the hydrocarbyl group of the plant oil molecule has strong tendency of aromatization, and can enter the zeolite pores to selectively form C_6—C_8 aromatics; during catalytic cracking of plant oil and fatty acids, a portion of the oxygen is removed in the form of water through hydrogen transfer reaction, while olefins are prevented from being saturated, which can ensure proper yields of both low-carbon olefins and light aromatics. 展开更多
关键词 plant oil catalytic CRACKING HYDROGEN-TRANSFER LIGHT olefins LIGHT aromatics
下载PDF
Removal of Trace Olefins from Aromatics Catalyzed by[bmim]Br-AlCl_3 Ionic Liquid
7
作者 Jiang Zhenghong Hou Minghui +1 位作者 Weng Huixin Shi Li (State Key Lab of Chemical Engineering,East China University of Science & Technology,Shanghai 200237) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2010年第2期41-44,共4页
1-Butyl-3-methylimidazolium bromochloroaluminate ([bmim]Br-AlCl3) ionic liquid was used as an acid catalyst for removal of trace olefins from the aromatic hydrocarbons. The influence of various reaction parameters s... 1-Butyl-3-methylimidazolium bromochloroaluminate ([bmim]Br-AlCl3) ionic liquid was used as an acid catalyst for removal of trace olefins from the aromatic hydrocarbons. The influence of various reaction parameters such as reaction time, temperature, dosage and acid strength of catalyst was investigated. The experimental results demonstrated that the ionic liquid exhibited excellent activity under mild reaction conditions, with the conversion of olefins reaching 98.84% and the bromine index of the aromatics varying from 1129 to 13. On the basis of the results obtained, thereof, a possible reaction mechanism was proposed. 展开更多
关键词 ionic liquid bromine index olefins removal aromatics catalyst
下载PDF
Removal of Trace Olefins from Aromatics by Catalytic Alkylation Using 1-Alkyl-3-methylimidazolium Bromochloroaluminate Catalyst
8
作者 Sun Yu Shi Li(State Key Laboratory of Chemical Engineering,East China University of Science and Technology,Shanghai 200237) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2011年第2期14-18,共5页
Removal of trace olefins from aromatic liquids had been investigated in the presence of various ionic liquids like 1-ethyl-3-methylimidazoliurn bromochloroaluminate (EMIMBr-AlCl3), 1-butyl-3-methylimidazolium bromoc... Removal of trace olefins from aromatic liquids had been investigated in the presence of various ionic liquids like 1-ethyl-3-methylimidazoliurn bromochloroaluminate (EMIMBr-AlCl3), 1-butyl-3-methylimidazolium bromochloroaluminate (BMIMBr-AlCl3), l-hexyl-3-methylimidazolium bromochloroaluminate (HMIMBr-AlCl3), and 1-octyl-3-methylimidazolium bromochloroaluminate (OMIMBr-A1C13). It was found that the longer the alkyl chain of ionic liquid cations was, the higher the olefins conversion would be. OMIMBr-AlCl3 (with 0.67 molar fraction of AlCl3) had an obvious performance on olefins removal. The influences of various reaction parameters such as the dosage of catalyst, the reaction temperature, and the reaction time on the reaction catalyzed by OMIMBr-AlCl3 were investigated. Under optimum reaction conditions, a higher than 99% conversion of olefins was achieved. The preliminary results revealed that the process could save time, consume less energy, separate products easier, and cause less pollution to the environment. 展开更多
关键词 ionic liquids olefins removal 1-alkyl-3-methylimidazolium bromochloroaluminate aromatIC
下载PDF
Industrial Production of Catalyst for Removing Trace Olefins from Aromatics
9
作者 Pu Xin Shi Li 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2012年第2期44-49,共6页
A novel additive incorporated into the catalyst for removing trace olefins from aromatics was proposed, and under the laboratory conditions the lifetime of the catalyst was increased from 5 h to 8 h upon specifying th... A novel additive incorporated into the catalyst for removing trace olefins from aromatics was proposed, and under the laboratory conditions the lifetime of the catalyst was increased from 5 h to 8 h upon specifying the conversion of the olefins equating to more than 55% as a criterion. Catalyst production, which was named ROC, has been successfully scaled up from laboratory formulations to commercial scale manufacture and over 100 tons of catalyst had been produced. The superiority in catalytic activity was identified by the evaluation tests of the ROC catalyst based on whatever kind of feedstocks (with their bromine index ranging from 400 mgBr/100g to 1 200 mgBr/100g) being used as the feedstock. The X-ray diffraction patterns had verified that the additive was highly dispersed on the surface of catalyst; the GC-FID analysis results showed that the ROC catalyst could increase the xylene content; the pyridine-FTIR spectroscopic analyses suggested that the additive could increase the amount of the weak L acids, which was the main cause leading to enhancement of the catalyst activity. 展开更多
关键词 olefins aromatics industrial production CATALYST
下载PDF
Commercial Demonstration Unit for Manufacture of Aromatics from Toluene and Methanol with Coproduction of Low-Carbon Olefins Will Be Set Up
10
《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第1期51-51,共1页
On November 29,2013 the Shaanxi Coal Chemicals Technology Engineering Center,Ltd.(SCCTEC),the CNOOC Huizhou Refining and Chemical Company and the SINOPEC Luoyang Engineering Company,Ltd.signed an agreement on cooperat... On November 29,2013 the Shaanxi Coal Chemicals Technology Engineering Center,Ltd.(SCCTEC),the CNOOC Huizhou Refining and Chemical Company and the SINOPEC Luoyang Engineering Company,Ltd.signed an agreement on cooperation in development of 展开更多
关键词 DMTO Commercial Demonstration Unit for Manufacture of aromatics from Toluene and Methanol with Coproduction of Low-Carbon olefins Will Be Set Up BE
下载PDF
Targeted Catalytic Cracking to Olefins(TCO):Reaction Mechanism,Production Scheme,and Process Perspectives 被引量:2
11
作者 Youhao Xu Yanfen Zuo +3 位作者 Wenjie Yang Xingtian Shu Wei Chen Anmin Zheng 《Engineering》 SCIE EI CAS CSCD 2023年第11期100-109,共10页
Light olefins are important organic building blocks in the chemicals industry.The main low-carbon olefin production methods,such as catalytic cracking and steam cracking,have considerable room for improvement in their... Light olefins are important organic building blocks in the chemicals industry.The main low-carbon olefin production methods,such as catalytic cracking and steam cracking,have considerable room for improvement in their utilization of hydrocarbons.This review provides a thorough overview of recent studies on catalytic cracking,steam cracking,and the conversion of crude oil processes.To maximize the production of light olefins and reduce carbon emissions,the perceived benefits of various technologies are examined.Taking olefin generation and conversion as a link to expand upstream and downstream processes,a targeted catalytic cracking to olefins(TCO)process is proposed to meet current demands for the transformation of oil refining into chemical production.The main innovations of this process include a multiple feedstock supply,the development of medium-sized catalysts,and a diameter-transformed fluidizedbed reactor with different feeding schemes.In combination with other chemical processes,TCO is expected to play a critical role in enabling petroleum refining and chemical processes to achieve low carbon dioxide emissions. 展开更多
关键词 Light olefins Steam cracking Catalytic cracking TCO process Oil processing revolution
下载PDF
Boosting CO_(2) hydrogenation to high-value olefins with highly stable performance over Ba and Na co-modified Fe catalyst 被引量:2
12
作者 Joshua Iseoluwa Orege Na Liu +3 位作者 Cederick Cyril Amoo Jian Wei Qingjie Ge Jian Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期614-624,I0014,共12页
CO_(2)hydrogenation has been considered to be a highly promising route for the production of high-value olefins(HVOs)while also mitigating CO_(2)emissions.However,it is challenging to achieve high selectivity and main... CO_(2)hydrogenation has been considered to be a highly promising route for the production of high-value olefins(HVOs)while also mitigating CO_(2)emissions.However,it is challenging to achieve high selectivity and maintain stable performance for HVOs(ethylene,propylene,and linear a-olefins)over a prolonged reaction time due to the difficulty in precise control of carbon coupling and rapid catalyst deactivation.Herein,we present a selective Ba and Na co-modified Fe catalyst enriched with Fe_(5)C_(2)and Fe_(3)C active sites that can boost HVO synthesis with up to 66.1%selectivity at an average CO_(2)conversion of 38%for over 500 h.Compared to traditional NaFe catalyst,the combined effect of Ba and Na additives in the NaBaFe-0.5 catalyst suppressed excess oxidation of FeCxsites by H_(2)O.The absence of Fe3O4phase in the spent NaBaFe-0.5 catalyst reflects the stabilization effect of the co-modifiers on the FeCxsites.This study provides a strategy to design Fe-based catalysts that can be scaled up for the stable synthesis of HVOs from CO_(2)hydrogenation. 展开更多
关键词 CO_(2)hydrogenation High-value olefins Barium additive Iron carbide Catalytic stability
下载PDF
Morphology,Nanostructure,and Oxidation Reactivity of Particulate Matter Emitted by Diesel Blending with Various Aromatics 被引量:1
13
作者 Yang He Li Bo +3 位作者 Liu Shuntao Wang Yajun Zhang Ran Guo Lingyan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第1期1-9,共9页
This study aims to analyze the influence of the polycyclic aromatic hydrocarbon(PAH)content in diesel on the physical and chemical properties of diesel soot particles.Four diesel fuels with different PAH content were ... This study aims to analyze the influence of the polycyclic aromatic hydrocarbon(PAH)content in diesel on the physical and chemical properties of diesel soot particles.Four diesel fuels with different PAH content were tested on a 11.6 L direct-injection diesel engine.The raw particulate matter(PM)before the after-treatment devices was collected using the thermophoresis sampling system and the filter sampling system.A transmission electron microscope and Raman spectrometer are used to analyze the physical properties of the soot particles,including morphology,primary particle size distribution,and graphitization degree.A Fourier transform infrared spectrometer and thermogravimetric analyzer are used to characterize the surface chemical composition and oxidation reactivity of soot particles,respectively.The results show that as the PAH content in the fuel decreases,the size of the primary soot particles decreases from 29.58 to 26.70 nm.The graphitization degree of soot particles first increases and then decreases,and the relative content of the aliphatic hydrocarbon functional groups of soot particles first decreases and then increases.The T_(10),T_(50),and T_(90) of soot from high-PAH fuel are 505.3,589.3,and 623.5℃,while those from low-PAH fuel are 480.1,557.5,and 599.2℃,respectively.This indicates that exhaust PM generated by the low-PAH fuel has poor oxidation reactivity.However,as the PAH content in fuel is further decreased,the excessively high cetane number may cause uneven mixing and incomplete combustion,leading to enhanced oxidation reactivity. 展开更多
关键词 particulate matter aromatics MORPHOLOGY NANOSTRUCTURE oxidation reactivity
下载PDF
Selective Hydrogenation of Polycyclic Aromatics to Monocyclic Aromatics over NiMoC/HβCatalysts in a Methane and Hydrogen Environment 被引量:1
14
作者 Shen Zhibing Fu Rao +7 位作者 Zhang Shangli Wang Shunmei Zhang Wu Tang Ruiyuan Liang Shengrong Zhang Juntao Yuan Shibao Jiang Haiyan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期92-100,共9页
To obtain high yields of monocyclic aromatic hydrocarbons with methyl side chains,such as toluene and xylene,methane(CH_(4))can be introduced into the hydrocracking of polycyclic aromatic hydrocarbons.CH_(4)can partic... To obtain high yields of monocyclic aromatic hydrocarbons with methyl side chains,such as toluene and xylene,methane(CH_(4))can be introduced into the hydrocracking of polycyclic aromatic hydrocarbons.CH_(4)can participate in the reaction,supply methyl side chains to the product,and improve product distribution.In this study,the hydrogenation reaction of polycyclic aromatic hydrocarbons over a carbonized NiMo/Hβcatalyst in a CH_(4)and hydrogen(H_(2))environment was investigated to study the promotional effect of CH_(4)on the hydrocracking of polycyclic aromatics.Under conditions of 3.5 MPa,380℃,volume air velocity of 4 h^(-1),gas-oil volume ratio of 800,and H_(2):CH_(4)molar ratio of 1:1,the conversion rate of naphthalene was 99.97%,the liquid phase yield was 93.62%,and the selectivity of BTX were 17.76%,25.17%,and 20.47%,respectively.In comparison to the use of a H_(2)atmosphere,the selectivity of benzene was significantly decreased,whereas the selectivity of toluene and xylene were increased.It was shown that CH_(4)can participate in the hydrocracking of naphthalene and improve the selectivity of toluene and xylene in the liquid product.The carbonized NiMo/Hβcatalyst was characterized by a range of analytical methods(such as X-ray diffraction(XRD),ammonia-temperature-programmed desorption(NH3-TPD),hydrogen-temperature-programmed reduction(H_(2)-TPR),and X-ray photoelectron spectroscopy(XPS)).The results indicated that Ni and Mo carbides were the major species in the carbonized NiMo/Hβcatalyst and were considered to be active sites for the activation of CH_(4)and H_(2).After loading the metal components,the catalyst displayed prominent weak acidic sites,which may be suitable locations for cracking,alkylation,and other related reactions.Therefore,the carbonized NiMo/Hβcatalyst displayed multiple functions during the hydrocracking of polycyclic aromatic hydrocarbons in a CH_(4)and H_(2)environment.These results could be used to develop a new way to efficiently utilize polycyclic aromatic hydrocarbons and natural gas resources. 展开更多
关键词 methane polycyclic aromatic hydrocarbons HYDROCRACKING NiMoC/Hβ TOLUENE XYLENE
下载PDF
Reducing Olefins in FCC Gasoline by Isomerization and Aromatization over Modified Nano-ZSM-5 被引量:14
15
作者 ZHANGPeiqing WANGXiangsheng 《催化学报》 SCIE CAS CSCD 北大核心 2003年第3期159-160,共2页
关键词 纳米分子筛 ZSM-5 催化剂 FCC汽油 烯烃 芳构化 异构化
下载PDF
Insights into the size effect of ZnCr_(2)O_(4)spinel oxide in composite catalysts for conversion of syngas to aromatics 被引量:1
16
作者 Yi Fu Youming Ni +5 位作者 Wenhao Cui Xudong Fang Zhiyang Chen Zhaopeng Liu Wenliang Zhu Zhongmin Liu 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期530-537,共8页
Direct conversion of syngas to aromatics(STA)over oxide-zeolite composite catalysts is promising as an alternative method for aromatics production.However,the structural effect of the oxide component in composite cata... Direct conversion of syngas to aromatics(STA)over oxide-zeolite composite catalysts is promising as an alternative method for aromatics production.However,the structural effect of the oxide component in composite catalysts is still ambiguous.Herein,we investigate the size effect by selecting ZnCr_(2)O_(4)spinel,as a probe oxide,mixing with H-ZSM-5 zeolite as a composite catalyst for STA reaction.The CO conversion,aromatics selectivity and space-time yield(STY)of aromatics are all significantly improved with the crystal size of ZnCr_(2)O_(4)oxide decreases,which can mainly attribute to the higher oxygen vacancy concentration and thus the rapid generation of more C1oxygenated intermediate species.Based on the understanding of the size-performance relationship,ZnCr_(2)O_(4)-400 with a smaller size mixing with H-ZSM-5 can achieve32.6%CO conversion with 76%aromatics selectivity.The STY of aromatics reaches as high as 4.79 mmol g_(cat)^(-1)h^(-1),which outperforms the previously reported some typical catalysts.This study elucidates the importance of regulating the size of oxide to design more efficient oxidezeolite composite catalysts for conversion of syngas to value-added chemicals. 展开更多
关键词 Size effect Syngas conversion aromatics ZnCr_(2)O_(4)oxide H-ZSM-5 zeolite
下载PDF
Molecular Characterization of C_(9+)Aromatics in Gasoline by Gas Chromatography-Mass Spectrometry
17
作者 Han Xu Song Chunxia +2 位作者 Qian Qin Li Changxiu Sun Xinyuan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期81-91,共11页
The comprehensive characterization of heavy aromatic hydrocarbons in gasoline is important to optimize the blending process and understand the correlation between aromatics content and engine particulate emissions.How... The comprehensive characterization of heavy aromatic hydrocarbons in gasoline is important to optimize the blending process and understand the correlation between aromatics content and engine particulate emissions.However,most current analysis methods can only provide the composition of C_(8)/C_(8-) aromatics.In this study,a simple and fast gas chromatography-mass spectrometry(GC-MS)method to identify and quantify C_(9+)aromatics in gasoline was developed.A selected ion monitoring model was employed to eliminate interference from non-aromatic compounds in the detection of target compounds,as well as that between target compounds with different molecular formulas.The identification of C_(9+)aromatics was based on the retention time of model compounds,combined with characteristic mass fragment ions,boiling points,and retention indexes.Seventy-nine C_(9)–C_(12)aromatic compounds were quantified based on the calibration of representative model compounds,and the method demonstrated good linearity,and high accuracy and precision.Furthermore,the developed methodology was successfully applied to the analysis of gasoline fractions from the reforming,pyrolysis,straight-run,delayed coking,and catalytic cracking processes,as well as commercial gasolines.The results showed that C_(9)aromatics were the predominant aromatics in all gasoline samples,followed by C10 aromatics.Alkylbenzenes such as C_(9)H_(12)and C_(10)H_(14)were the main components in the reforming,straight-run,delayed coking,and catalytic cracking gasoline fractions,as well as in the commercial gasolines,in which 1,2,4-trimethylbenzene and 3-ethyltoluene were dominant;in contrast,aromatics with higher degrees of unsaturation such as indene were the most abundant aromatics in the pyrolysis gasoline fraction. 展开更多
关键词 GASOLINE C_(9+)aromatics heavy aromatics GC-MS
下载PDF
Reaction characteristics of maximizing light olefins and decreasing methane in C_(5) hydrocarbons catalytic pyrolysis
18
作者 Mei-Jia Liu Gang Wang +3 位作者 Shun-Nian Xu Tao-Ran Zheng Zhong-Dong Zhang Sheng-Bao He 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1909-1921,共13页
When converting C_(5) hydrocarbons to light olefins by catalytic pyrolysis,the generation of low value-added methane will affect the atomic utilization efficiency of C_(5) hydrocarbons.To improve the atomic utilizatio... When converting C_(5) hydrocarbons to light olefins by catalytic pyrolysis,the generation of low value-added methane will affect the atomic utilization efficiency of C_(5) hydrocarbons.To improve the atomic utilization efficiency,different generation pathways of light olefins and methane in the catalytic pyrolysis of C_(5) hydrocarbons were analyzed,and the effects of reaction conditions and zeolite types were inves-tigated.Results showed that light olefins were mainly formed by breaking the C_(2)-C_(3) bond in the middle position,while methane was formed by breaking the C_(1)-C_(2) bond at the end.Meanwhile,it was discovered that the hydrogen transfer reaction could be reduced by about 90%by selecting MTT zeolite with 1D topology and FER zeolite with 2D topology under high weight hourly space velocity(WHSV)and high temperature operations,thus leading to the improvement of the light olefins selectivity for the catalytic pyrolysis of n-pentane and 1-pentene to 55.12% and 74.60%,respectively.Moreover,the fraction ratio of terminal C_(1)-C_(2) bond cleavage was reduced,which would reduce the selectivity of methane to 6.63%and 1.83%.Therefore,zeolite with low hydrogen transfer activity and catalytic pyrolysis process with high WHsV will be conducive to maximize light olefins and to decrease methane. 展开更多
关键词 N-PENTANE 1-Pentene Catalytic pyrolysis Light olefins METHANE
下载PDF
Study on the epoxidation of olefins with H_(2)O_(2)catalyzed by biquaternary ammonium phosphotungstic acid
19
作者 Zijie Zhang Qianyu Zha +3 位作者 Ying Liu Zhibing Zhang Jia Liu Zheng Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期146-154,共9页
Selective epoxidation of olefins is an important field in chemical industry.In this work,we developed a new phosphotungstic acid catalyst{[(C_8H_(17))(CH_(3))_(2)N]_(2)(CH_(2))_(3)}_(1.5){PO_(4)[WO(O_(2))_(2)]_(4)}wit... Selective epoxidation of olefins is an important field in chemical industry.In this work,we developed a new phosphotungstic acid catalyst{[(C_8H_(17))(CH_(3))_(2)N]_(2)(CH_(2))_(3)}_(1.5){PO_(4)[WO(O_(2))_(2)]_(4)}with long carbon chain and biquaternary ammonium cation.Cyclohexene could be epoxidized to cyclohexene oxide in 96.3%conversion and 98.2%selectivity.The catalyst type,solvent type,catalyst loading,initial molar ratio,temperature,cycle performance and substrate extensibility were studied and optimized,the kinetic parameters about overall reaction and unit reaction were also calculated.Dynamic light scattering analysis was carried out to explain the different catalytic performance between catalysts with different carbon chain length.This novel catalyst and the corresponding dynamics and mechanism study could probably help the industrial application on the epoxidation of cyclohexene with H_(2)O_(2). 展开更多
关键词 Epoxidation of olefins Phosphotungstic acid CYCLOHEXENE Kinetic study
下载PDF
Fabrication of a sinter-resistant Fe-MFI zeolite dragonfruit-like catalyst for syngas to aromatics conversion
20
作者 Chenguang Wang Chengyan Wen +8 位作者 Zheng Liang Zhipeng Tian Qian Jiang Yuhe Liao Xunzhu Jiang Lungang Chen Qiying Liu Longlong Ma Michiel Dusselier 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期70-79,I0003,共11页
Direct conversion of syngas to aromatics has great potential to decrease fossil fuel dependence.Here,a unique structured hybrid catalyst composed of Fe_(3)O_(4) nanoparticles intimately dispersed inside an acidic zeol... Direct conversion of syngas to aromatics has great potential to decrease fossil fuel dependence.Here,a unique structured hybrid catalyst composed of Fe_(3)O_(4) nanoparticles intimately dispersed inside an acidic zeolite is developed.1 to 4 nm sized Fe_(3)O_(4) nanoparticles end up evenly dispersed in an acidic and slightly mesoporous Al-ZSM-5 based on Fe_(3)O_(4) restructuring during co-hydro thermal synthesis using organosilane modification.A very high aromatic productivity of 214 mmolaromatics h^(-1) gFe^(-1) can be obtained with a remarkable 62%aromatic selectivity in hydrocarbons.This catalyst has excellent sintering resistance ability and maintains stable aromatics production over 570 h.The synthetic insights that postulate a mechanism for the metastable oxide-zeolite reorganization during hydrothermal synthesis could serve as a generic route to sinter-resistant oxide-zeolite composite materials with uniform,well-dispersed oxide nanoparticles in close intimacy with-and partially confined in-a zeolite matrix. 展开更多
关键词 SYNGAS aromatics Sinter resistant Oxide-zeolite catalyst
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部