Manufacturing flexible magnetic-driven actuators with complex structures and magnetic arrangements to achieve diverse functionalities is becoming a popular trend.Among various manufacturing technologies,magnetic-assis...Manufacturing flexible magnetic-driven actuators with complex structures and magnetic arrangements to achieve diverse functionalities is becoming a popular trend.Among various manufacturing technologies,magnetic-assisted digital light processing(DLP)stands out because it enables precise manufacturing of macro-scale structures and micro-scale distributions with the assistance of an external magnetic field.Current research on manufacturing magnetic flexible actuators mostly employs single materials,which limits the magnetic driving performance to some extent.Based on these characterizations,we propose a multi-material magnetic field-assisted DLP technology to produce flexible actuators with an accuracy of 200μm.The flexible actuators are printed using two materials with different mechanical and magnetic properties.Considering the interface connectivity of multi-material printing,the effect of interfaces on mechanical properties is also explored.Experimental results indicate good chemical affinity between the two materials we selected.The overlap or connection length of the interface moderately improves the tensile strength of multi-material structures.In addition,we investigate the influence of the volume fraction of the magnetic part on deformation.Simulation and experimental results indicate that increasing the volume ratio(20%to 50%)of the magnetic structure can enhance the responsiveness of the actuator(more than 50%).Finally,we successfully manufacture two multi-material flexible actuators with specific magnetic arrangements:a multi-legged crawling robot and a flexible gripper capable of crawling and grasping actions.These results confirm that this method will pave the way for further research on the precise fabrication of magnetic flexible actuators with diverse functionalities.展开更多
基金support from the National Natural Science Foundation of China(Grant No.52205424)the Natural Science Foundation of Zhejiang Province for Distinguished Young Scholars of China(Grant No.LR22E050002)+1 种基金the“Pioneer”and“Leading Goose”R&D Program of Zhejiang Province of China(Grant No.2023C01170)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY23A020001).
文摘Manufacturing flexible magnetic-driven actuators with complex structures and magnetic arrangements to achieve diverse functionalities is becoming a popular trend.Among various manufacturing technologies,magnetic-assisted digital light processing(DLP)stands out because it enables precise manufacturing of macro-scale structures and micro-scale distributions with the assistance of an external magnetic field.Current research on manufacturing magnetic flexible actuators mostly employs single materials,which limits the magnetic driving performance to some extent.Based on these characterizations,we propose a multi-material magnetic field-assisted DLP technology to produce flexible actuators with an accuracy of 200μm.The flexible actuators are printed using two materials with different mechanical and magnetic properties.Considering the interface connectivity of multi-material printing,the effect of interfaces on mechanical properties is also explored.Experimental results indicate good chemical affinity between the two materials we selected.The overlap or connection length of the interface moderately improves the tensile strength of multi-material structures.In addition,we investigate the influence of the volume fraction of the magnetic part on deformation.Simulation and experimental results indicate that increasing the volume ratio(20%to 50%)of the magnetic structure can enhance the responsiveness of the actuator(more than 50%).Finally,we successfully manufacture two multi-material flexible actuators with specific magnetic arrangements:a multi-legged crawling robot and a flexible gripper capable of crawling and grasping actions.These results confirm that this method will pave the way for further research on the precise fabrication of magnetic flexible actuators with diverse functionalities.