The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthqu...The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.展开更多
AIM: We aimed to observe the expression of extracellular matrix (ECM) and cellular adhesion molecules (CAM) in cirrhotic liver tissues after hepatitis C virus (HCV) infection. METHODS: Twelve patients with post HCV in...AIM: We aimed to observe the expression of extracellular matrix (ECM) and cellular adhesion molecules (CAM) in cirrhotic liver tissues after hepatitis C virus (HCV) infection. METHODS: Twelve patients with post HCV inflammatory liver cirrhosis were selected to evaluate their liver function and other virological, pathological parameters. Then three specimens of cirrhotic patients whose health assessment results and laboratory data were similar and three normal liver specimens explanted from liver grafts prepared for liver transplantation were chosen for investigating gene expression of ECM and CAM using cDNA expression array. RESULTS: The cDNA array assay revealed 36.7% (36/96)of genes with changes, in which 26.3% (26/96) was up regulated and 10.1% (10/96) was down-regulated. Integrin (ITGA), collagen (COL), ADAMTS were identified as the characteristic changes of ECM and CAM gene expression levels. ITGA were demonstrated β1 and β2 sub-section changed in liver cirrhosis.CONCLUSION: ECM and CAM play an important role inthe progression of liver cirrhosis after HCV infection. The capital mechanism is related to the inflammatory cellsinfiltration, the activation and transformation of ECM producing cells and the imbalance between production and elimination of ECM.展开更多
A three-dimensional electrical-thermal coupling model based on the finite element method is applied to study thermal properties of implant-defined vertical cavity surface emitting laser (VCSEL) arrays. Several param...A three-dimensional electrical-thermal coupling model based on the finite element method is applied to study thermal properties of implant-defined vertical cavity surface emitting laser (VCSEL) arrays. Several parameters including inter-element spacing, scales, injected current density and substrate temperature are considered. The actual temperatures obtained through experiment are in excellent agreement with the calculated results, which proves the accuracy of the model. Due to the serious thermal problem, it is essential to design arrays of low self-heating. The analysis can provide a foundation for designing VCSEL arrays in the future.展开更多
A method for identification of pulsations in time series of magnetic field data which are simultaneously present in multiple channels of data at one or more sensor locations is described. Candidate pulsations of inter...A method for identification of pulsations in time series of magnetic field data which are simultaneously present in multiple channels of data at one or more sensor locations is described. Candidate pulsations of interest are first identified in geomagnetic time series by inspection. Time series of these "training events" are represented in matrix form and transpose-multiplied to generate time- domain covariance matrices. The ranked eigenvectors of this matrix are stored as a feature of the pulsation. In the second stage of the algorithm, a sliding window (approxi- mately the width of the training event) is moved across the vector-valued time-series comprising the channels on which the training event was observed. At each window position, the data covariance matrix and associated eigen- vectors are calculated. We compare the orientation of the dominant eigenvectors of the training data to those from the windowed data and flag windows where the dominant eigenvectors directions are similar. This was successful in automatically identifying pulses which share polarization and appear to be from the same source process. We apply the method to a case study of continuously sampled (50 Hz) data from six observatories, each equipped with three- component induction coil magnetometers. We examine a 90-day interval of data associated with a cluster of four observatories located within 50 km of Napa, California, together with two remote reference stations-one 100 km to the north of the cluster and the other 350 km south. When the training data contains signals present in the remote reference observatories, we are reliably able to identify and extract global geomagnetic signals such as solar-generated noise. When training data contains pulsations only observed in the cluster of local observatories, we identify several types of non-plane wave signals having similar polarization.展开更多
Thermal characteristics of multiple laser stripes integrated into one chip is investigated theoretically in this paper. The temperature pattern of the laser diode mini-array packaged in a TO-can is analyzed and optimi...Thermal characteristics of multiple laser stripes integrated into one chip is investigated theoretically in this paper. The temperature pattern of the laser diode mini-array packaged in a TO-can is analyzed and optimized to achieve a uniform temperature distribution among the laser stripes and along the cavity direction. The temperature among the laser stripes varies by more than 5 K if the stripes are equally arranged, and can be reduced to less than 0.4 K if proper arrangement is designed. For conventional submount structure, the temperature variation along the cavity direction is as high as 7 K, while for an optimized trapezoid submount structure, the temperature varies only within 0.5 K.展开更多
Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences amo...Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences among elements, inter-element spacing, element size and emitted wavelength is analyzed detailedly and systematically. We design and fabricate 1×2 implant defined VCSEL arrays for optimum beam steering performance. Electroni- cally controlled beam steering with a maximum deflection angle of 1.6° is successfully achieved in the 1 × 2 VCSEL arrays. The percentage of the power in the central lobe is above 39% when steering. The results show that the steering is controllable. Compared with other beam steering methods, the fabrication process is simple and of low cost.展开更多
The measuring method of structure damage during vibrating has been developed by applying simple supported beam as object of study, fiber Bragg grating strain sensing array as the measuring method, and wavelet package ...The measuring method of structure damage during vibrating has been developed by applying simple supported beam as object of study, fiber Bragg grating strain sensing array as the measuring method, and wavelet package analysis as signal extracting tools. The damage data of simple supported beam at vibrating state has been collected. The damage characteristic indexes have been extracted based on analyzing and handling the damage data with wavelet analysis. The experiment shows that fiber Bragg grating strain sensing array can sensitively measure the experimental data of simple supported beam at vibrating state. The fiber Bragg grating strain sensing array measuring is a new method in dynamic measurement.展开更多
Phased array radar is the main sensor in a battlefield.Phased array antenna is the main execution unit of the phased array radar,and it greatly affects the reliability of the phased array radar. As a result,the fragme...Phased array radar is the main sensor in a battlefield.Phased array antenna is the main execution unit of the phased array radar,and it greatly affects the reliability of the phased array radar. As a result,the fragment damaged antenna test is important.As the materials of phased array antenna are not easy to get,the fragment damaged antenna test is difficult to carry out. Then we present a study on this problem and introduce the principles of dimensional analysis to solve it. Firstly, the fragments damage antenna target dimensionless model is constructed. Secondly,the finite element analysis software ANSYS / LS-DYNA are used to carry out a large number of different materials simulation test for dimensional analysis. Finally,based on dimensional test analysis,the materials equivalent empirical model between different antennas target is presented in the same damage. The results of this study provide a feasible and valuable solution for different materials' target damaged test.展开更多
A novel flywheel energy storage (FES) motor/generator (M/G) was proposed for marine systems. The purpose was to improve the power quality of a marine power system (MPS) and strengthen the energy recycle. Two str...A novel flywheel energy storage (FES) motor/generator (M/G) was proposed for marine systems. The purpose was to improve the power quality of a marine power system (MPS) and strengthen the energy recycle. Two structures including the magnetic or non-magnetic inner-rotor were contrasted in the magnetostatic field by using finite element analysis (FEA). By optimally designing the size parameters, the average speed of FEA results of was 17 200 r/m, and the current was controlled between 62 and 68 A in the transient field. The electrical machine electromagnetism design was further optimized by the FEA in the temperature field, to find the local overheating point under the normal operation condition and provide guidance for the cooling system. Finally, it can be concluded from the comprehensive physical field analysis that the novel redundant structure M/G can improve the efficiency of the M/G and maintain the stability of the MPS.展开更多
Single nucleotide polymorphism(SNP)genotyping arrays provide an optimal high-throughput platform for genetic research and molecular breeding programs in both animals and plants.In this study,a highquality and custom-d...Single nucleotide polymorphism(SNP)genotyping arrays provide an optimal high-throughput platform for genetic research and molecular breeding programs in both animals and plants.In this study,a highquality and custom-designed Rice3K56 SNP array was developed with the resequencing data of 3024 rice accessions worldwide,which was then tested extensively in 192 representative rice samples.Printed on the Gene Titan chips of Affymetrix Axiom each containing 56,606 SNP markers,the Rice3K56 array has a high genotyping reliability(99.6%),high and uniform genome coverage(an average of 6.7-kb between adjacent SNPs),abundant polymorphic information and easy automation,compared with previously developed rice SNP arrays.When applied in rice varietal differentiation,population diversity analysis,gene mapping of 13 complex traits by a genome-wide association study analysis(GWAS),and genome selection experiments in a recombinant inbred line and a multi-parent advanced generation inter-cross populations,these properties of the Rice3K56 array were well demonstrated for its power and great potential to be a highly efficient tool for rice genetic research and genomic breeding.展开更多
A feature extraction method was proposed to sectorial scan image of Ti-6Al-4V electron beam welding seam based on principal component analysis to solve problem of high-dimensional data resulting in timeconsuming in de...A feature extraction method was proposed to sectorial scan image of Ti-6Al-4V electron beam welding seam based on principal component analysis to solve problem of high-dimensional data resulting in timeconsuming in defect recognition. Seven features were extracted from the image and represented 87. 3% information of the original data. Both the extracted features and the original data were used to train support vector machine model to assess the feature extraction performance in two aspects: recognition accuracy and training time. The results show that using the extracted features the recognition accuracy of pore,crack,lack of fusion and lack of penetration are 93%,90.7%,94.7% and 89.3%,respectively,which is slightly higher than those using the original data. The training time of the models using the extracted features is extremely reduced comparing with those using the original data.展开更多
X-Code is one of the most important redundant array of independent disk (RAID)-6 codes which are capable of tolerating double disk failures. However, the code length of X-Code is restricted to be a prime number, and...X-Code is one of the most important redundant array of independent disk (RAID)-6 codes which are capable of tolerating double disk failures. However, the code length of X-Code is restricted to be a prime number, and such code length restriction of X-Code limits its usage in the real storage systems. Moreover, as a vertical RAID-6 code, X-Code can not be extended easily to an arbitrary code length like horizontal RAID-6 codes. In this paper, a novel and efficient code shortening algorithm for X-Code is proposed to extend X-Code to an arbitrary length. It can be further proved that the code shortening algorithm maintains the maximum-distance-separable (MDS) property of X-Code, and namely, the shortened X-Code is still MDS code with the optimal space efficiency. In the context of the shortening algorithm for X-Code, an in-depth performance analysis on X-Code at consecutive code lengths is conducted, and the impacts of the code shortening algorithm on the performance of X-Code in various performance metrics are revealed.展开更多
The qualitative characterization and quantitative analysis of five bioactive flavonoids in Salix bordensis Turcz. were achieved via reversed-phase high-performance liquid chromatography coupled with diode array detect...The qualitative characterization and quantitative analysis of five bioactive flavonoids in Salix bordensis Turcz. were achieved via reversed-phase high-performance liquid chromatography coupled with diode array detection and tandem mass spectrometry, by using an Agilent ZORBAX SB-C18 HPLC column with a gradient elution of 0.3% (v/v) formic acid in water and methanol as the mobile phase. The compounds in the mixture were clearly identified by comparing their HPLC-DAD ultraviolet spectra, retention times, and MS data with those of corresponding reference compounds. All calibration curves showed good linearity (r2 > 0.9998) within the test ranges. The LOD, LOQ, specificity, precision, and accuracy for the method were validated. The results demonstrated that this analytical approach is ideal for the determination of bioactive compounds, such as flavonoids, and that it constructed a basis for the comprehensive evaluation of the quality of Salix bordensis Turcz.展开更多
Synapses are essential units for the flow of information in the brain.Over the last 70 years,synapses have been widely studied in multiple animal models including worms,fruit flies,and rodents.In comparison,the study ...Synapses are essential units for the flow of information in the brain.Over the last 70 years,synapses have been widely studied in multiple animal models including worms,fruit flies,and rodents.In comparison,the study of human synapses has evolved significantly slower,mainly because of technical limitations.However,three novel methods allowing the analysis of molecular,morphological,and functional properties of human synapses may expand our knowledge of the human brain.Here,we briefly describe these methods,and evaluate how the information provided by each unique approach may contribute to the functional and anatomical analysis of the synaptic component of human brain circuitries.In particular,using tissue from cryopreserved human brains,synaptic plasticity can be studied in isolated synaptosomes by fluorescence analysis of single-synapse long-term potentiation(FASS-LTP),and subpopulations of synapses can be thoroughly assessed in the ribbons of brain tissue by array tomography(AT).Currently,it is also possible to quantify synaptic density in the living human brain by positron emission tomography(PET),using a novel synaptic radio-ligand.Overall,data provided by FASS-LTP,AT,and PET may significantly contribute to the global understanding of synaptic structure and function in both healthy and diseased human brains,thus directly impacting translational research.展开更多
A new technology for fabrication of silica on silicon arrayed waveguide grating (AWG) based on deep etching and thermal oxidation is presented.Using this method,a silicon layer is remained at the side of waveguide.The...A new technology for fabrication of silica on silicon arrayed waveguide grating (AWG) based on deep etching and thermal oxidation is presented.Using this method,a silicon layer is remained at the side of waveguide.The stress distribution and effective refractive index of waveguide fabricated by this approach are calculated using finite element and finite difference beam propagation method,respectively.The results of these studies indicate that the stress of silica on silicon optical waveguide can be matched in parallel and vertical direction and AWG polarization dependent wavelength (PDλ) can be reduced effectively due to side-silicon layer.展开更多
Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based ...Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.展开更多
The construction of modern livable cities faces challenges in karst areas,including ground collapse and engineering problems.Wuhan,with a population of 13.74×10^(6) and approximately 1161 km^(2)of soluble rocks i...The construction of modern livable cities faces challenges in karst areas,including ground collapse and engineering problems.Wuhan,with a population of 13.74×10^(6) and approximately 1161 km^(2)of soluble rocks in the urban area of 8569.15 km^(2),predominantly consists of concealed karst areas where occasional ground collapse events occur,posing significant threats to underground engineering projects.To address these challenges,a comprehensive geological survey was conducted in Wuhan,focusing on major karstrelated issues.Geophysical methods offer advantages over drilling in detecting concealed karst areas due to their efficiency,non-destructiveness,and flexibility.This paper reviewed the karst geological characteristics in Wuhan and the geophysical exploration methods for karst,selected eight effective geophysical methods for field experimentation,evaluated their suitability,and proposed method combinations for different karst scenarios.The results show that different geophysical methods have varying applicability for karst detection in Wuhan,and combining multiple methods enhances detection effectiveness.The specific recommendations for method combinations provided in this study serve as a valuable reference for karst detection in Wuhan.展开更多
AIM: To detect the common intestinal pathogenic bacteria quickly and accurately.METHODS: A rapid (〈3 h) experimental procedure was set up based upon the gene chip technology, Target genes were amplified and hybri...AIM: To detect the common intestinal pathogenic bacteria quickly and accurately.METHODS: A rapid (〈3 h) experimental procedure was set up based upon the gene chip technology, Target genes were amplified and hybridized by oligonucleotide microarrays.RESULTS: One hundred and seventy strains of bacteria in pure culture belonging to 11 genera were successfully discriminated under comparatively same conditions, and a series of specific hybridization maps corresponding to each kind of bacteria were obtained. When this method was applied to 26 divided cultures, 25 (96.2%) were identified.CONCLUSION: Salmonella sp., Escherichia coli, Shigella sp., Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus , Proteus sp., Bacillus cereus, Vibrio cholerae, Enterococcus faecalis, Yersinia enterocolitica, and Campylobacter jejuni can be detected and identified by our microarrays. The accuracy, range, and discrimination power of this assay can be continually improved by adding further oligonudeotides to the arrays without any significant increase of complexity or cost.展开更多
Four process parameters, pad diameter, stencil thickness, ball diameter and stand-off were chosen as four control factors. By using an L25 (5^6 ) orthogonal array the ceramic ball grid array ( CBGA ) solder joints...Four process parameters, pad diameter, stencil thickness, ball diameter and stand-off were chosen as four control factors. By using an L25 (5^6 ) orthogonal array the ceramic ball grid array ( CBGA ) solder joints which have 25 different combinations of process parameters were designed. The numerical models of all the 25 CBGA solder joints were developed using the Sugrace Evolver. Utilizing the sugrace coordinate exported from the 25 CBGA solder joints numerical models, the finite element analysis models were set up and the nonlinear finite element analysis of the CBGA solder joints under thermal cycles were pegrormed by ANSYS. The thermal fatigue life of CBGA solder joint was calculated using Coffin-Manson equation. Based on the calculated thermal fatigue life results, the range analysis and the variance analysis were pegrormed. The results show that the fatigue life of CBGA solder joint is affected by the pad diameter, the stencil thickness, the ball diameter and the stand-off in a descending order, the best combination of process parameters results in the longest fatigue life is 0.07 mm stand-off, 0.125 mm stencil thickness of, 0.85 mm ball diameter and 0. 89 mm pad diameter. With 95% confidence the pad diameter has a significant effect on the reliability of CBGA solder joints whereas the stand-off, the stencil thickness and the ball diameter have little effect on the reliability of CBGA solder joints.展开更多
基金This work is jointly supported by the National Natural Science Foundation of China(No.41904057)the National Key Research and Development Program of China(No.2018YFC1503402).
文摘The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.
文摘AIM: We aimed to observe the expression of extracellular matrix (ECM) and cellular adhesion molecules (CAM) in cirrhotic liver tissues after hepatitis C virus (HCV) infection. METHODS: Twelve patients with post HCV inflammatory liver cirrhosis were selected to evaluate their liver function and other virological, pathological parameters. Then three specimens of cirrhotic patients whose health assessment results and laboratory data were similar and three normal liver specimens explanted from liver grafts prepared for liver transplantation were chosen for investigating gene expression of ECM and CAM using cDNA expression array. RESULTS: The cDNA array assay revealed 36.7% (36/96)of genes with changes, in which 26.3% (26/96) was up regulated and 10.1% (10/96) was down-regulated. Integrin (ITGA), collagen (COL), ADAMTS were identified as the characteristic changes of ECM and CAM gene expression levels. ITGA were demonstrated β1 and β2 sub-section changed in liver cirrhosis.CONCLUSION: ECM and CAM play an important role inthe progression of liver cirrhosis after HCV infection. The capital mechanism is related to the inflammatory cellsinfiltration, the activation and transformation of ECM producing cells and the imbalance between production and elimination of ECM.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61376049,61076044,61107026,61204011and U1037602the Natural Science Foundation of Beijing under Grant Nos 4132006,4102003,and 4112006+1 种基金the Scientific Research Fund Project of Municipal Education Commission of Beijing under Grant No KM201210005004the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20121103110018
文摘A three-dimensional electrical-thermal coupling model based on the finite element method is applied to study thermal properties of implant-defined vertical cavity surface emitting laser (VCSEL) arrays. Several parameters including inter-element spacing, scales, injected current density and substrate temperature are considered. The actual temperatures obtained through experiment are in excellent agreement with the calculated results, which proves the accuracy of the model. Due to the serious thermal problem, it is essential to design arrays of low self-heating. The analysis can provide a foundation for designing VCSEL arrays in the future.
文摘A method for identification of pulsations in time series of magnetic field data which are simultaneously present in multiple channels of data at one or more sensor locations is described. Candidate pulsations of interest are first identified in geomagnetic time series by inspection. Time series of these "training events" are represented in matrix form and transpose-multiplied to generate time- domain covariance matrices. The ranked eigenvectors of this matrix are stored as a feature of the pulsation. In the second stage of the algorithm, a sliding window (approxi- mately the width of the training event) is moved across the vector-valued time-series comprising the channels on which the training event was observed. At each window position, the data covariance matrix and associated eigen- vectors are calculated. We compare the orientation of the dominant eigenvectors of the training data to those from the windowed data and flag windows where the dominant eigenvectors directions are similar. This was successful in automatically identifying pulses which share polarization and appear to be from the same source process. We apply the method to a case study of continuously sampled (50 Hz) data from six observatories, each equipped with three- component induction coil magnetometers. We examine a 90-day interval of data associated with a cluster of four observatories located within 50 km of Napa, California, together with two remote reference stations-one 100 km to the north of the cluster and the other 350 km south. When the training data contains signals present in the remote reference observatories, we are reliably able to identify and extract global geomagnetic signals such as solar-generated noise. When training data contains pulsations only observed in the cluster of local observatories, we identify several types of non-plane wave signals having similar polarization.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFB0402002,2016YFB0401803,2017YFB0405002,2017YFB0405003,and 2017YFB0405005)the National Natural Science Foundation of China(Grant Nos.61574160,61704184,and 61334005)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Science(Grant No.XDA09020401)the Chinese Academy of Science Visiting Professorship for Senior International Scientists(Grant No.2013T2J0048)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20170430)the CPSF-CAS Joint Foundation for Excellent Postdoctoral Fellows,China(Grant No.2016LH0026)
文摘Thermal characteristics of multiple laser stripes integrated into one chip is investigated theoretically in this paper. The temperature pattern of the laser diode mini-array packaged in a TO-can is analyzed and optimized to achieve a uniform temperature distribution among the laser stripes and along the cavity direction. The temperature among the laser stripes varies by more than 5 K if the stripes are equally arranged, and can be reduced to less than 0.4 K if proper arrangement is designed. For conventional submount structure, the temperature variation along the cavity direction is as high as 7 K, while for an optimized trapezoid submount structure, the temperature varies only within 0.5 K.
基金Supported by the‘Supporting First Action’Joint Foundation for Outstanding Postdoctoral Program under Grant Nos Y7YBSH0001 and Y7BSH14001the National Natural Science Foundation of China under Grant No 61434006the National Key Basic Research Program of China under Grant No 2017YFB0102302
文摘Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences among elements, inter-element spacing, element size and emitted wavelength is analyzed detailedly and systematically. We design and fabricate 1×2 implant defined VCSEL arrays for optimum beam steering performance. Electroni- cally controlled beam steering with a maximum deflection angle of 1.6° is successfully achieved in the 1 × 2 VCSEL arrays. The percentage of the power in the central lobe is above 39% when steering. The results show that the steering is controllable. Compared with other beam steering methods, the fabrication process is simple and of low cost.
文摘The measuring method of structure damage during vibrating has been developed by applying simple supported beam as object of study, fiber Bragg grating strain sensing array as the measuring method, and wavelet package analysis as signal extracting tools. The damage data of simple supported beam at vibrating state has been collected. The damage characteristic indexes have been extracted based on analyzing and handling the damage data with wavelet analysis. The experiment shows that fiber Bragg grating strain sensing array can sensitively measure the experimental data of simple supported beam at vibrating state. The fiber Bragg grating strain sensing array measuring is a new method in dynamic measurement.
文摘Phased array radar is the main sensor in a battlefield.Phased array antenna is the main execution unit of the phased array radar,and it greatly affects the reliability of the phased array radar. As a result,the fragment damaged antenna test is important.As the materials of phased array antenna are not easy to get,the fragment damaged antenna test is difficult to carry out. Then we present a study on this problem and introduce the principles of dimensional analysis to solve it. Firstly, the fragments damage antenna target dimensionless model is constructed. Secondly,the finite element analysis software ANSYS / LS-DYNA are used to carry out a large number of different materials simulation test for dimensional analysis. Finally,based on dimensional test analysis,the materials equivalent empirical model between different antennas target is presented in the same damage. The results of this study provide a feasible and valuable solution for different materials' target damaged test.
基金Supported by the Fundamental Research Funds for the Central Universities under Grants Nos. HEUCF101706 and HEUCF111705
文摘A novel flywheel energy storage (FES) motor/generator (M/G) was proposed for marine systems. The purpose was to improve the power quality of a marine power system (MPS) and strengthen the energy recycle. Two structures including the magnetic or non-magnetic inner-rotor were contrasted in the magnetostatic field by using finite element analysis (FEA). By optimally designing the size parameters, the average speed of FEA results of was 17 200 r/m, and the current was controlled between 62 and 68 A in the transient field. The electrical machine electromagnetism design was further optimized by the FEA in the temperature field, to find the local overheating point under the normal operation condition and provide guidance for the cooling system. Finally, it can be concluded from the comprehensive physical field analysis that the novel redundant structure M/G can improve the efficiency of the M/G and maintain the stability of the MPS.
基金supported by the National Natural Science Foundation of China(31971927 and U21A20214)the Science and Technology Major Project of Anhui Province(2021d06050002)+4 种基金the Improved Varieties Joint Research(Rice)Project of Anhui Province(the 14th five-year plan)the National Key Research and Development Program of China(2020YFE0202300)the CAAS Innovative Team Awardthe Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(B21HJ0215,B21HJ0223,and B21HJ0508)Nanfan Special Project,CAAS(YBXM04)。
文摘Single nucleotide polymorphism(SNP)genotyping arrays provide an optimal high-throughput platform for genetic research and molecular breeding programs in both animals and plants.In this study,a highquality and custom-designed Rice3K56 SNP array was developed with the resequencing data of 3024 rice accessions worldwide,which was then tested extensively in 192 representative rice samples.Printed on the Gene Titan chips of Affymetrix Axiom each containing 56,606 SNP markers,the Rice3K56 array has a high genotyping reliability(99.6%),high and uniform genome coverage(an average of 6.7-kb between adjacent SNPs),abundant polymorphic information and easy automation,compared with previously developed rice SNP arrays.When applied in rice varietal differentiation,population diversity analysis,gene mapping of 13 complex traits by a genome-wide association study analysis(GWAS),and genome selection experiments in a recombinant inbred line and a multi-parent advanced generation inter-cross populations,these properties of the Rice3K56 array were well demonstrated for its power and great potential to be a highly efficient tool for rice genetic research and genomic breeding.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.51575134 and 51205083)
文摘A feature extraction method was proposed to sectorial scan image of Ti-6Al-4V electron beam welding seam based on principal component analysis to solve problem of high-dimensional data resulting in timeconsuming in defect recognition. Seven features were extracted from the image and represented 87. 3% information of the original data. Both the extracted features and the original data were used to train support vector machine model to assess the feature extraction performance in two aspects: recognition accuracy and training time. The results show that using the extracted features the recognition accuracy of pore,crack,lack of fusion and lack of penetration are 93%,90.7%,94.7% and 89.3%,respectively,which is slightly higher than those using the original data. The training time of the models using the extracted features is extremely reduced comparing with those using the original data.
基金supported by the National Basic Research Program of China (Grant Nos.2011CB302300, 2011CB302301)the National High-Technology Research and Development Program of China (Grant Nos.2009AA01A401,2009AA01A402)+1 种基金the National Natural Science Foundation of China (Grant Nos.60873028, 60933002, 61025008)the Changjiang Innovation Group of Education of China (Grant No.IRT0725)
文摘X-Code is one of the most important redundant array of independent disk (RAID)-6 codes which are capable of tolerating double disk failures. However, the code length of X-Code is restricted to be a prime number, and such code length restriction of X-Code limits its usage in the real storage systems. Moreover, as a vertical RAID-6 code, X-Code can not be extended easily to an arbitrary code length like horizontal RAID-6 codes. In this paper, a novel and efficient code shortening algorithm for X-Code is proposed to extend X-Code to an arbitrary length. It can be further proved that the code shortening algorithm maintains the maximum-distance-separable (MDS) property of X-Code, and namely, the shortened X-Code is still MDS code with the optimal space efficiency. In the context of the shortening algorithm for X-Code, an in-depth performance analysis on X-Code at consecutive code lengths is conducted, and the impacts of the code shortening algorithm on the performance of X-Code in various performance metrics are revealed.
文摘The qualitative characterization and quantitative analysis of five bioactive flavonoids in Salix bordensis Turcz. were achieved via reversed-phase high-performance liquid chromatography coupled with diode array detection and tandem mass spectrometry, by using an Agilent ZORBAX SB-C18 HPLC column with a gradient elution of 0.3% (v/v) formic acid in water and methanol as the mobile phase. The compounds in the mixture were clearly identified by comparing their HPLC-DAD ultraviolet spectra, retention times, and MS data with those of corresponding reference compounds. All calibration curves showed good linearity (r2 > 0.9998) within the test ranges. The LOD, LOQ, specificity, precision, and accuracy for the method were validated. The results demonstrated that this analytical approach is ideal for the determination of bioactive compounds, such as flavonoids, and that it constructed a basis for the comprehensive evaluation of the quality of Salix bordensis Turcz.
基金supported by National Institutes of Health Grants R21-AG048506,P01-AG000538 and RO1-AG34667(to CWC)UC MEXUS-CONACYT Grant CN-16-170(to GAP and CWC)
文摘Synapses are essential units for the flow of information in the brain.Over the last 70 years,synapses have been widely studied in multiple animal models including worms,fruit flies,and rodents.In comparison,the study of human synapses has evolved significantly slower,mainly because of technical limitations.However,three novel methods allowing the analysis of molecular,morphological,and functional properties of human synapses may expand our knowledge of the human brain.Here,we briefly describe these methods,and evaluate how the information provided by each unique approach may contribute to the functional and anatomical analysis of the synaptic component of human brain circuitries.In particular,using tissue from cryopreserved human brains,synaptic plasticity can be studied in isolated synaptosomes by fluorescence analysis of single-synapse long-term potentiation(FASS-LTP),and subpopulations of synapses can be thoroughly assessed in the ribbons of brain tissue by array tomography(AT).Currently,it is also possible to quantify synaptic density in the living human brain by positron emission tomography(PET),using a novel synaptic radio-ligand.Overall,data provided by FASS-LTP,AT,and PET may significantly contribute to the global understanding of synaptic structure and function in both healthy and diseased human brains,thus directly impacting translational research.
文摘A new technology for fabrication of silica on silicon arrayed waveguide grating (AWG) based on deep etching and thermal oxidation is presented.Using this method,a silicon layer is remained at the side of waveguide.The stress distribution and effective refractive index of waveguide fabricated by this approach are calculated using finite element and finite difference beam propagation method,respectively.The results of these studies indicate that the stress of silica on silicon optical waveguide can be matched in parallel and vertical direction and AWG polarization dependent wavelength (PDλ) can be reduced effectively due to side-silicon layer.
基金supported by the National Natural Science Foundation of China(No.51279033).
文摘Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.
基金jointly supported by the project of Chinese National Natural Science Foundation(42107485)National Key R&D Program(2020YFC1512400,2018YFC800804)China Geological Survey(DD20190282,DD20221734,and DD20230323)。
文摘The construction of modern livable cities faces challenges in karst areas,including ground collapse and engineering problems.Wuhan,with a population of 13.74×10^(6) and approximately 1161 km^(2)of soluble rocks in the urban area of 8569.15 km^(2),predominantly consists of concealed karst areas where occasional ground collapse events occur,posing significant threats to underground engineering projects.To address these challenges,a comprehensive geological survey was conducted in Wuhan,focusing on major karstrelated issues.Geophysical methods offer advantages over drilling in detecting concealed karst areas due to their efficiency,non-destructiveness,and flexibility.This paper reviewed the karst geological characteristics in Wuhan and the geophysical exploration methods for karst,selected eight effective geophysical methods for field experimentation,evaluated their suitability,and proposed method combinations for different karst scenarios.The results show that different geophysical methods have varying applicability for karst detection in Wuhan,and combining multiple methods enhances detection effectiveness.The specific recommendations for method combinations provided in this study serve as a valuable reference for karst detection in Wuhan.
基金Supported by the National High Technology ResearchDevelopment Program of China (863 Program), No.2002AA2Z2011
文摘AIM: To detect the common intestinal pathogenic bacteria quickly and accurately.METHODS: A rapid (〈3 h) experimental procedure was set up based upon the gene chip technology, Target genes were amplified and hybridized by oligonucleotide microarrays.RESULTS: One hundred and seventy strains of bacteria in pure culture belonging to 11 genera were successfully discriminated under comparatively same conditions, and a series of specific hybridization maps corresponding to each kind of bacteria were obtained. When this method was applied to 26 divided cultures, 25 (96.2%) were identified.CONCLUSION: Salmonella sp., Escherichia coli, Shigella sp., Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus , Proteus sp., Bacillus cereus, Vibrio cholerae, Enterococcus faecalis, Yersinia enterocolitica, and Campylobacter jejuni can be detected and identified by our microarrays. The accuracy, range, and discrimination power of this assay can be continually improved by adding further oligonudeotides to the arrays without any significant increase of complexity or cost.
基金This work was supported by Science Foundation of Guangxi Zhuang Autonomous Region (Contract No. 02336060).
文摘Four process parameters, pad diameter, stencil thickness, ball diameter and stand-off were chosen as four control factors. By using an L25 (5^6 ) orthogonal array the ceramic ball grid array ( CBGA ) solder joints which have 25 different combinations of process parameters were designed. The numerical models of all the 25 CBGA solder joints were developed using the Sugrace Evolver. Utilizing the sugrace coordinate exported from the 25 CBGA solder joints numerical models, the finite element analysis models were set up and the nonlinear finite element analysis of the CBGA solder joints under thermal cycles were pegrormed by ANSYS. The thermal fatigue life of CBGA solder joint was calculated using Coffin-Manson equation. Based on the calculated thermal fatigue life results, the range analysis and the variance analysis were pegrormed. The results show that the fatigue life of CBGA solder joint is affected by the pad diameter, the stencil thickness, the ball diameter and the stand-off in a descending order, the best combination of process parameters results in the longest fatigue life is 0.07 mm stand-off, 0.125 mm stencil thickness of, 0.85 mm ball diameter and 0. 89 mm pad diameter. With 95% confidence the pad diameter has a significant effect on the reliability of CBGA solder joints whereas the stand-off, the stencil thickness and the ball diameter have little effect on the reliability of CBGA solder joints.