Here a Gaussian Shell Model Array (GSMA) beam is used to investigate the propagation characteristics in the jet engine exhaust region. It has great significance to improve various optical systems for wide application ...Here a Gaussian Shell Model Array (GSMA) beam is used to investigate the propagation characteristics in the jet engine exhaust region. It has great significance to improve various optical systems for wide application in trapping cold atoms, creating gratings, and atmospheric optical communication. We calculate analytical formulas for the spectral density (SD) and the propagation factors M<sub>x</sub>2</sup> and M<sub>y</sub>2</sup> of a GSMA beam. The influence of inner scale of turbulence in the jet engine exhaust region on its power spectrum has been also analyzed. According to these results, the influence of turbulence in a jet engine exhaust on a GSMA beam has been reduced by changing the parameters of light source and turbulence. For example, it is an excellent tool for mitigation of the jet engine exhaust-induced anisotropy of turbulence to increase the source coherence length, the root-mean-squared (rms) beam width, the wavelength or reduce the outer scale of turbulence.展开更多
The presence of array imperfection and mutual coupling in sensor arrays poses several challenges for development of effective algorithms for the direction-of-arrival (DOA) estimation problem in array processing. A c...The presence of array imperfection and mutual coupling in sensor arrays poses several challenges for development of effective algorithms for the direction-of-arrival (DOA) estimation problem in array processing. A correlation domain wideband DOA estimation algorithm without array calibration is proposed, to deal with these array model errors, using the arbitrary antenna array of omnidirectional elements. By using the matrix operators that have the memory and oblivion characteristics, this algorithm can separate the incident signals effectively. Compared with other typical wideband DOA estimation algorithms based on the subspace theory, this algorithm can get robust DOA estimation with regard to position error, gain-phase error, and mutual coupling, by utilizing a relaxation technique based on signal separation. The signal separation category and the robustness of this algorithm to the array model errors are analyzed and proved. The validity and robustness of this algorithm, in the presence of array model errors, are confirmed by theoretical analysis and simulation results.展开更多
The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path i...The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path if known the antenna configuration, the polarization field radiation pattern and the spatial distribution of scatters. With the development of communication technology, information transmission spectrum is more and more scarce. The original model provides only a single channel polarization state, so the information will be limited that the polarization state carries in the polarization modulation. The research is so significance that how to carries polarization modulation information by using multi-antenna polarization state. However, the present study shows that have no depolarization effect model for multi-antenna systems. In this paper, we propose a multi-antenna geometrical depolarization model. On the basis of a single antenna to calculate the depolarization effect of the model, and through simulation to analysis the main factors that influence the depolarization effect. This article provides a multi-antenna geometrical depolarization channel modeling that can applied to large-scale array antenna, and to some extent increase the speed of information transmission.展开更多
Photovoltaic(PV)modules age with time for various reasons such as corroded joints and terminals and glass coating defects,and their ageing degrades the PV array power.With the help of the PV array numerical model,this...Photovoltaic(PV)modules age with time for various reasons such as corroded joints and terminals and glass coating defects,and their ageing degrades the PV array power.With the help of the PV array numerical model,this paper explores the effects of PV module ageing on the PV array power,and the power gains and costs of rearranging and recabling aged PV modules in a PV array.The numerical PV array model is first revised to account for module ageing,rearrangement and recabling,with the relevant equations presented herein.The updated numerical model is then used to obtain the array powers for seven different PV arrays.The power results are then analysed in view of the attributes of the seven PV array examples.A guiding method to recommend recabling after rearranging aged modules is then proposed,leading to further significant power gains,while eliminating intra-row mismatches.When certain conditions are met,it was shown that recabling PV modules after rearranging them may lead to further significant power gains,reaching 57%and 98%in two considered PV array examples.Higher gains are possible in other arrays.A cost-benefit analysis weighing annual power gains versus estimated recabling costs is also given for the seven considered PV array examples to guide recabling decisions based on technical and economic merits.In the considered examples,recabling costs can be recovered in<4 years.Compared with the powers of the aged arrays,power gains due to our proposed rearranging and recabling the PV arrays ranged between 73%and 131%in the considered examples—well over the gains reported in the literature.Moreover,the cost of our static module rearrangement and recabling method outshines the costs of dynamic reconfiguration methods recently published in the literature.展开更多
In design optimization of crane metal structures, present approaches are based on simple models and mixed variables, which are difficult to use in practice and usually lead to failure of optimized results for rounding...In design optimization of crane metal structures, present approaches are based on simple models and mixed variables, which are difficult to use in practice and usually lead to failure of optimized results for rounding variables. Crane metal structure optimal design(CMSOD) belongs to a constrained nonlinear optimization problem with discrete variables. A novel algorithm combining ant colony algorithm with a mutation-based local search(ACAM) is developed and used for a real CMSOD for the first time. In the algorithm model, the encoded mode of continuous array elements is introduced. This not only avoids the need to round optimization design variables during mixed variable optimization, but also facilitates the construction of heuristic information, and the storage and update of the ant colony pheromone. Together with the proposed ACAM, a genetic algorithm(GA) and particle swarm optimization(PSO) are used to optimize the metal structure of a crane. The optimization results show that the convergence speed of ACAM is approximately 20% of that of the GA and around 11% of that of the PSO. The objective function value given by ACAM is 22.23% less than the practical design value, a reduction of 16.42% over the GA and 3.27% over the PSO. The developed ACAM is an effective intelligent method for CMSOD and superior to other methods.展开更多
Fluorescence lifetime provides a third independent dimension of information for the reso-lution of total luminescence spectra of multicomponent mixtures. The incorporation of this pa-rameter into the Excitation-Emissi...Fluorescence lifetime provides a third independent dimension of information for the reso-lution of total luminescence spectra of multicomponent mixtures. The incorporation of this pa-rameter into the Excitation-Emission Matrix (EEM) by the phase-modulation technique resultsin a three-dimensional Excitation-Emission-Frequency Array (EEFA). Multicomponent analysisbased on the three-dimensional EEFA brings a qualitative change for the resolved spectra, i.e.,individual spectra can be uniquely resolved, which is impossible with any two-dimensional anal-ysis. In this paper, we present a method for analyzing the EEFA. We show mathematicallythat with the three-dimensional analysis of the EEFA individual spectra and lifetimes can be ob-tained. Our algorithm is developed in mathematical detail and demonstrated by its applicationto a two-component mixture.展开更多
The contact point configuration should be carefully chosen to ensure a stable capture,especially for the non-cooperative target capture mission using multi-armed spacecraft.In this work scenario,the contact points on ...The contact point configuration should be carefully chosen to ensure a stable capture,especially for the non-cooperative target capture mission using multi-armed spacecraft.In this work scenario,the contact points on the base and on the arms are distributed on the opposite side of the target.Otherwise,large forces will be needed.To cope with this problem,an uneven-oriented distribution union criterion is proposed.The union criterion contains a virtual symmetrical criterion and a geometry criterion.The virtual symmetrical contact point criterion is derived from the proof of the force closure principle using computational geometry to ensure a stable grasp,and the geometry criterion is calculated by the volume of the minimum polyhedron formed by the contact points to get a wide-range distribution.To further accelerate the optimization rate and enhance the global search ability,a line array modeling method and a continuous-discrete global search algorithm are proposed.The line array modeling method reduces the workload of calculating the descent direction and the gradient available,while the continuous-discrete global search algorithm reducing the optimization dimension.Then a highly efficient grasping is achieved and the corresponding contact point is calculated.Finally,an exhaustive verification is conducted to numerically analyze the disturbance resistance ability,and simulation results demonstrate the effectiveness of the proposed algorithms.展开更多
Array processing is to process the signals carried by the propagating waves received at an array of sensors. When the signals propagate through the practical random time-variant medium, their wavefronts can show the p...Array processing is to process the signals carried by the propagating waves received at an array of sensors. When the signals propagate through the practical random time-variant medium, their wavefronts can show the progressive losses of coherence with increasing spatial separation. These decorrelations of wavefronts result in an angular spread in the wavenumber spectrum centered about the true signal dircction-of-arrival. This paper puts the emphasis upon the array processing of the angular-spread signal which is called the Generalized Directional (GD) signal and aims to match array processing to this signal model in the energy sense. In this paper, we also present a method of the computer simulation of the generalized directional signal model. Some results of computer simulation experiments and lake-tests in Xinanjiang River are given.展开更多
文摘Here a Gaussian Shell Model Array (GSMA) beam is used to investigate the propagation characteristics in the jet engine exhaust region. It has great significance to improve various optical systems for wide application in trapping cold atoms, creating gratings, and atmospheric optical communication. We calculate analytical formulas for the spectral density (SD) and the propagation factors M<sub>x</sub>2</sup> and M<sub>y</sub>2</sup> of a GSMA beam. The influence of inner scale of turbulence in the jet engine exhaust region on its power spectrum has been also analyzed. According to these results, the influence of turbulence in a jet engine exhaust on a GSMA beam has been reduced by changing the parameters of light source and turbulence. For example, it is an excellent tool for mitigation of the jet engine exhaust-induced anisotropy of turbulence to increase the source coherence length, the root-mean-squared (rms) beam width, the wavelength or reduce the outer scale of turbulence.
基金supported by the National "863" High Technology Research and Development Program of China(2007AA703428)
文摘The presence of array imperfection and mutual coupling in sensor arrays poses several challenges for development of effective algorithms for the direction-of-arrival (DOA) estimation problem in array processing. A correlation domain wideband DOA estimation algorithm without array calibration is proposed, to deal with these array model errors, using the arbitrary antenna array of omnidirectional elements. By using the matrix operators that have the memory and oblivion characteristics, this algorithm can separate the incident signals effectively. Compared with other typical wideband DOA estimation algorithms based on the subspace theory, this algorithm can get robust DOA estimation with regard to position error, gain-phase error, and mutual coupling, by utilizing a relaxation technique based on signal separation. The signal separation category and the robustness of this algorithm to the array model errors are analyzed and proved. The validity and robustness of this algorithm, in the presence of array model errors, are confirmed by theoretical analysis and simulation results.
基金supported in part by the National Natural Science Foundation of China(61561039,61461044)the Natural Science Foundation of Ningxia(NZ14045)the Higher School Science and Technology Research Project of Ningxia(NGY2014051)
文摘The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path if known the antenna configuration, the polarization field radiation pattern and the spatial distribution of scatters. With the development of communication technology, information transmission spectrum is more and more scarce. The original model provides only a single channel polarization state, so the information will be limited that the polarization state carries in the polarization modulation. The research is so significance that how to carries polarization modulation information by using multi-antenna polarization state. However, the present study shows that have no depolarization effect model for multi-antenna systems. In this paper, we propose a multi-antenna geometrical depolarization model. On the basis of a single antenna to calculate the depolarization effect of the model, and through simulation to analysis the main factors that influence the depolarization effect. This article provides a multi-antenna geometrical depolarization channel modeling that can applied to large-scale array antenna, and to some extent increase the speed of information transmission.
文摘Photovoltaic(PV)modules age with time for various reasons such as corroded joints and terminals and glass coating defects,and their ageing degrades the PV array power.With the help of the PV array numerical model,this paper explores the effects of PV module ageing on the PV array power,and the power gains and costs of rearranging and recabling aged PV modules in a PV array.The numerical PV array model is first revised to account for module ageing,rearrangement and recabling,with the relevant equations presented herein.The updated numerical model is then used to obtain the array powers for seven different PV arrays.The power results are then analysed in view of the attributes of the seven PV array examples.A guiding method to recommend recabling after rearranging aged modules is then proposed,leading to further significant power gains,while eliminating intra-row mismatches.When certain conditions are met,it was shown that recabling PV modules after rearranging them may lead to further significant power gains,reaching 57%and 98%in two considered PV array examples.Higher gains are possible in other arrays.A cost-benefit analysis weighing annual power gains versus estimated recabling costs is also given for the seven considered PV array examples to guide recabling decisions based on technical and economic merits.In the considered examples,recabling costs can be recovered in<4 years.Compared with the powers of the aged arrays,power gains due to our proposed rearranging and recabling the PV arrays ranged between 73%and 131%in the considered examples—well over the gains reported in the literature.Moreover,the cost of our static module rearrangement and recabling method outshines the costs of dynamic reconfiguration methods recently published in the literature.
基金Supported by National Natural Science Foundation of China(Grant No.51275329)the Youth Fund Program of Taiyuan University of Science and Technology,China(Grant No.20113014)
文摘In design optimization of crane metal structures, present approaches are based on simple models and mixed variables, which are difficult to use in practice and usually lead to failure of optimized results for rounding variables. Crane metal structure optimal design(CMSOD) belongs to a constrained nonlinear optimization problem with discrete variables. A novel algorithm combining ant colony algorithm with a mutation-based local search(ACAM) is developed and used for a real CMSOD for the first time. In the algorithm model, the encoded mode of continuous array elements is introduced. This not only avoids the need to round optimization design variables during mixed variable optimization, but also facilitates the construction of heuristic information, and the storage and update of the ant colony pheromone. Together with the proposed ACAM, a genetic algorithm(GA) and particle swarm optimization(PSO) are used to optimize the metal structure of a crane. The optimization results show that the convergence speed of ACAM is approximately 20% of that of the GA and around 11% of that of the PSO. The objective function value given by ACAM is 22.23% less than the practical design value, a reduction of 16.42% over the GA and 3.27% over the PSO. The developed ACAM is an effective intelligent method for CMSOD and superior to other methods.
文摘Fluorescence lifetime provides a third independent dimension of information for the reso-lution of total luminescence spectra of multicomponent mixtures. The incorporation of this pa-rameter into the Excitation-Emission Matrix (EEM) by the phase-modulation technique resultsin a three-dimensional Excitation-Emission-Frequency Array (EEFA). Multicomponent analysisbased on the three-dimensional EEFA brings a qualitative change for the resolved spectra, i.e.,individual spectra can be uniquely resolved, which is impossible with any two-dimensional anal-ysis. In this paper, we present a method for analyzing the EEFA. We show mathematicallythat with the three-dimensional analysis of the EEFA individual spectra and lifetimes can be ob-tained. Our algorithm is developed in mathematical detail and demonstrated by its applicationto a two-component mixture.
基金supported by the National Natural Science Foundation of China(Nos.62003115,11972130)Shenzhen Natural Science Fund(the Stable Support Plan Program GXWD20201230155427003-20200821170719001).
文摘The contact point configuration should be carefully chosen to ensure a stable capture,especially for the non-cooperative target capture mission using multi-armed spacecraft.In this work scenario,the contact points on the base and on the arms are distributed on the opposite side of the target.Otherwise,large forces will be needed.To cope with this problem,an uneven-oriented distribution union criterion is proposed.The union criterion contains a virtual symmetrical criterion and a geometry criterion.The virtual symmetrical contact point criterion is derived from the proof of the force closure principle using computational geometry to ensure a stable grasp,and the geometry criterion is calculated by the volume of the minimum polyhedron formed by the contact points to get a wide-range distribution.To further accelerate the optimization rate and enhance the global search ability,a line array modeling method and a continuous-discrete global search algorithm are proposed.The line array modeling method reduces the workload of calculating the descent direction and the gradient available,while the continuous-discrete global search algorithm reducing the optimization dimension.Then a highly efficient grasping is achieved and the corresponding contact point is calculated.Finally,an exhaustive verification is conducted to numerically analyze the disturbance resistance ability,and simulation results demonstrate the effectiveness of the proposed algorithms.
文摘Array processing is to process the signals carried by the propagating waves received at an array of sensors. When the signals propagate through the practical random time-variant medium, their wavefronts can show the progressive losses of coherence with increasing spatial separation. These decorrelations of wavefronts result in an angular spread in the wavenumber spectrum centered about the true signal dircction-of-arrival. This paper puts the emphasis upon the array processing of the angular-spread signal which is called the Generalized Directional (GD) signal and aims to match array processing to this signal model in the energy sense. In this paper, we also present a method of the computer simulation of the generalized directional signal model. Some results of computer simulation experiments and lake-tests in Xinanjiang River are given.