Photovoltaic(PV)modules age with time for various reasons such as corroded joints and terminals and glass coating defects,and their ageing degrades the PV array power.With the help of the PV array numerical model,this...Photovoltaic(PV)modules age with time for various reasons such as corroded joints and terminals and glass coating defects,and their ageing degrades the PV array power.With the help of the PV array numerical model,this paper explores the effects of PV module ageing on the PV array power,and the power gains and costs of rearranging and recabling aged PV modules in a PV array.The numerical PV array model is first revised to account for module ageing,rearrangement and recabling,with the relevant equations presented herein.The updated numerical model is then used to obtain the array powers for seven different PV arrays.The power results are then analysed in view of the attributes of the seven PV array examples.A guiding method to recommend recabling after rearranging aged modules is then proposed,leading to further significant power gains,while eliminating intra-row mismatches.When certain conditions are met,it was shown that recabling PV modules after rearranging them may lead to further significant power gains,reaching 57%and 98%in two considered PV array examples.Higher gains are possible in other arrays.A cost-benefit analysis weighing annual power gains versus estimated recabling costs is also given for the seven considered PV array examples to guide recabling decisions based on technical and economic merits.In the considered examples,recabling costs can be recovered in<4 years.Compared with the powers of the aged arrays,power gains due to our proposed rearranging and recabling the PV arrays ranged between 73%and 131%in the considered examples—well over the gains reported in the literature.Moreover,the cost of our static module rearrangement and recabling method outshines the costs of dynamic reconfiguration methods recently published in the literature.展开更多
In this paper, a new carbon fiber based cathode — a low-outgassing-rate carbon fiber array cathode — is investigated experimentally, and the experimental results are compared with those of a polymer velvet cathode. ...In this paper, a new carbon fiber based cathode — a low-outgassing-rate carbon fiber array cathode — is investigated experimentally, and the experimental results are compared with those of a polymer velvet cathode. The carbon fiber array cathode is constructed by inserting bunches of carbon fibers into the cylindrical surface of the cathode. In experiment, the diode base pressure is maintained at 1×10^(-2) Pa–2×10^(-2) Pa, and the diode is driven by a compact pulsed power system which can provide a diode voltage of about 100 kV and pulse duration of about 30 ns at a repetition rate of tens of Hz.Real-time pressure data are measured by a magnetron gauge. Under the similar conditions, the experimental results show that the outgassing rate of the carbon fiber array cathode is an order smaller than that of the velvet cathode and that this carbon fiber array cathode has better shot-to-shot stability than the velvet cathode. Hence, this carbon fiber array cathode is demonstrated to be a promising cathode for the radial diode, which can be used in magnetically insulated transmission line oscillator(MILO) and relativistic magnetron(RM).展开更多
文摘Photovoltaic(PV)modules age with time for various reasons such as corroded joints and terminals and glass coating defects,and their ageing degrades the PV array power.With the help of the PV array numerical model,this paper explores the effects of PV module ageing on the PV array power,and the power gains and costs of rearranging and recabling aged PV modules in a PV array.The numerical PV array model is first revised to account for module ageing,rearrangement and recabling,with the relevant equations presented herein.The updated numerical model is then used to obtain the array powers for seven different PV arrays.The power results are then analysed in view of the attributes of the seven PV array examples.A guiding method to recommend recabling after rearranging aged modules is then proposed,leading to further significant power gains,while eliminating intra-row mismatches.When certain conditions are met,it was shown that recabling PV modules after rearranging them may lead to further significant power gains,reaching 57%and 98%in two considered PV array examples.Higher gains are possible in other arrays.A cost-benefit analysis weighing annual power gains versus estimated recabling costs is also given for the seven considered PV array examples to guide recabling decisions based on technical and economic merits.In the considered examples,recabling costs can be recovered in<4 years.Compared with the powers of the aged arrays,power gains due to our proposed rearranging and recabling the PV arrays ranged between 73%and 131%in the considered examples—well over the gains reported in the literature.Moreover,the cost of our static module rearrangement and recabling method outshines the costs of dynamic reconfiguration methods recently published in the literature.
基金Project supported by the National Natural Science Foundation of China(Grant No.61671457)
文摘In this paper, a new carbon fiber based cathode — a low-outgassing-rate carbon fiber array cathode — is investigated experimentally, and the experimental results are compared with those of a polymer velvet cathode. The carbon fiber array cathode is constructed by inserting bunches of carbon fibers into the cylindrical surface of the cathode. In experiment, the diode base pressure is maintained at 1×10^(-2) Pa–2×10^(-2) Pa, and the diode is driven by a compact pulsed power system which can provide a diode voltage of about 100 kV and pulse duration of about 30 ns at a repetition rate of tens of Hz.Real-time pressure data are measured by a magnetron gauge. Under the similar conditions, the experimental results show that the outgassing rate of the carbon fiber array cathode is an order smaller than that of the velvet cathode and that this carbon fiber array cathode has better shot-to-shot stability than the velvet cathode. Hence, this carbon fiber array cathode is demonstrated to be a promising cathode for the radial diode, which can be used in magnetically insulated transmission line oscillator(MILO) and relativistic magnetron(RM).