The separation of arsenic and antimony from dust with high content of arsenic was conducted via a selective sulfidation roasting process.The factors such as roasting temperature,roasting time,sulfur content and nitrog...The separation of arsenic and antimony from dust with high content of arsenic was conducted via a selective sulfidation roasting process.The factors such as roasting temperature,roasting time,sulfur content and nitrogen flow rate were investigated using XRD,EPMA and SEM-EDS.In a certain range,the sulfur addition has an active effect on the arsenic volatilization because the solid solution phase((Sb,As)2O3)in the dust can be destroyed after the Sb component in it being vulcanized to Sb2S3 and this generated As2O3 continues to volatile.In addition,an amorphization reaction between As2O(3 )and Sb2O(3 )is hindered through the sulfidation of Sb2O3,which is also beneficial to increasing arsenic volatilization rate.The results show that volatilization rates of arsenic and antimony reach 95.36%and only 9.07%,respectively,under the optimum condition of roasting temperature of 350℃,roasting time of 90 min,sulfur content of 22%and N2 flow rate of 70 m L/min.In addition,the antimony in the residues can be reclaimed through a reverberatory process.展开更多
Massive amounts of low-grade tin middlings have been produced from tin tailings,in which arsenic and tin are worthy to be recycled.Owing to high sulfur content in these tin middlings,a novel self-sulfurization roastin...Massive amounts of low-grade tin middlings have been produced from tin tailings,in which arsenic and tin are worthy to be recycled.Owing to high sulfur content in these tin middlings,a novel self-sulfurization roasting was proposed to transform,separate and recover arsenic and tin in this research.There was no extra curing agent to be added,which decreased the formation of pollutant S-containing gas.The self-sulfurization process involved a two-stage roasting of reduction followed by sulfurization.First in reduction roasting,FeAsS decomposed to FeS and As and the As then transformed to As_(4)(g)and As_(4)S_(4)(g),via which the arsenic was separated and recovered.The arsenic content in the first residue could be decreased to 0.72 wt.%.Accompanied with it,the FeS was firstly oxidized to Fe_(1−x)S and then to SO_(2)(g)by the coexisted Fe_(2)O_(3),and finally reduced and combined with the independent Fe_(2)O_(3)to form Fe_(1−x)S.In the followed sulfurization roasting,the Fe_(1−x)S sulfurized SnO_(2)to SnS(g),due to which tin could be recovered and its content in the second residue decreased to 0.01 wt.%.This study provided an efficient method to separate and recover arsenic and tin from low-grade tin middlings.展开更多
基金Project(51564034)supported by the National Natural Science Fund for Distinguished Regional Scholars,ChinaProject(2015HA019)supported by the Scientific and Technological Leading Talent Program in Yunnan Province,China
文摘The separation of arsenic and antimony from dust with high content of arsenic was conducted via a selective sulfidation roasting process.The factors such as roasting temperature,roasting time,sulfur content and nitrogen flow rate were investigated using XRD,EPMA and SEM-EDS.In a certain range,the sulfur addition has an active effect on the arsenic volatilization because the solid solution phase((Sb,As)2O3)in the dust can be destroyed after the Sb component in it being vulcanized to Sb2S3 and this generated As2O3 continues to volatile.In addition,an amorphization reaction between As2O(3 )and Sb2O(3 )is hindered through the sulfidation of Sb2O3,which is also beneficial to increasing arsenic volatilization rate.The results show that volatilization rates of arsenic and antimony reach 95.36%and only 9.07%,respectively,under the optimum condition of roasting temperature of 350℃,roasting time of 90 min,sulfur content of 22%and N2 flow rate of 70 m L/min.In addition,the antimony in the residues can be reclaimed through a reverberatory process.
基金Project(52174384)supported by the National Natural Science Foundation of ChinaProject(LZB2021003)supported by Fundamental Research Funds for the Central Universities,China。
文摘Massive amounts of low-grade tin middlings have been produced from tin tailings,in which arsenic and tin are worthy to be recycled.Owing to high sulfur content in these tin middlings,a novel self-sulfurization roasting was proposed to transform,separate and recover arsenic and tin in this research.There was no extra curing agent to be added,which decreased the formation of pollutant S-containing gas.The self-sulfurization process involved a two-stage roasting of reduction followed by sulfurization.First in reduction roasting,FeAsS decomposed to FeS and As and the As then transformed to As_(4)(g)and As_(4)S_(4)(g),via which the arsenic was separated and recovered.The arsenic content in the first residue could be decreased to 0.72 wt.%.Accompanied with it,the FeS was firstly oxidized to Fe_(1−x)S and then to SO_(2)(g)by the coexisted Fe_(2)O_(3),and finally reduced and combined with the independent Fe_(2)O_(3)to form Fe_(1−x)S.In the followed sulfurization roasting,the Fe_(1−x)S sulfurized SnO_(2)to SnS(g),due to which tin could be recovered and its content in the second residue decreased to 0.01 wt.%.This study provided an efficient method to separate and recover arsenic and tin from low-grade tin middlings.