The substantial arsenic(As)content present in arsenic-containing bio-leaching residue(ABR)presents noteworthy environ-mental challenges attributable to its inherent instability and susceptibility to leaching.Given its...The substantial arsenic(As)content present in arsenic-containing bio-leaching residue(ABR)presents noteworthy environ-mental challenges attributable to its inherent instability and susceptibility to leaching.Given its elevated calcium sulfate content,ABR exhibits considerable promise for industrial applications.This study delved into the feasibility of utilizing ABR as a source of sulfates for producing super sulfated cement(SSC),offering an innovative binder for cemented paste backfill(CPB).Thermal treatment at varying temperatures of 150,350,600,and 800℃ was employed to modify ABR’s performance.The investigation encompassed the examination of phase transformations and alterations in the chemical composition of As within ABR.Subsequently,the hydration characteristics of SSC utilizing ABR,with or without thermal treatment,were studied,encompassing reaction kinetics,setting time,strength development,and microstructure.The findings revealed that thermal treatment changed the calcium sulfate structure in ABR,consequently impacting the resultant sample performance.Notably,calcination at 600℃ demonstrated optimal modification effects on both early and long-term strength attributes.This enhanced performance can be attributed to the augmented formation of reaction products and a densified micro-structure.Furthermore,the thermal treatment elicited modifications in the chemical As fractions within ABR,with limited impact on the As immobilization capacity of the prepared binders.展开更多
Lagoons are ecosystems for biodiversity and the livelihoods of coastal communities. The main objective of the study was to analyze the variability of arsenic concentrations in gastropods and bivalves in the Aby and Te...Lagoons are ecosystems for biodiversity and the livelihoods of coastal communities. The main objective of the study was to analyze the variability of arsenic concentrations in gastropods and bivalves in the Aby and Tendo lagoons, taking into account spatial, seasonal and hydrological variations. The study was carried out in four stages spread over two successive hydroclimatic cycles, including two seasons during the rainy season and two more during the dry season. The samples were taken in two areas of the Aby and Tendo lagoons. Arsenic levels were measured by ICP-MS. The results showed that mean arsenic concentrations in the muscles of organisms in Aby Lagoon ranged from 0.01 to 1.26 μg As/g, with a mean and median of 0.17 and 0.06 μg As/g, respectively. Fish had the highest levels of arsenic, followed by crustaceans, while molluscs and plants had lower and comparable concentrations of As. Arsenic concentrations in tilapia and jawbones varied significantly between sites and seasons, with higher concentrations at Tendo and during the rainy season. Arsenic concentrations in gastropods and bivalves were significantly higher than those of other species, with averages of 0.74 and 1.03 mg As/kg, respectively.展开更多
Roles of Marigold extracts (ME) on arsenic trioxide (ATO)-induced oxidative damage to pancreatic β-cells need to be further elucidated. In this study, NIT-1 cells were treated with different concentrations of and/or ...Roles of Marigold extracts (ME) on arsenic trioxide (ATO)-induced oxidative damage to pancreatic β-cells need to be further elucidated. In this study, NIT-1 cells were treated with different concentrations of and/or ATO, following by the cell viability was detected by CCK8 assay. Then, intracellular reactive oxygen species (ROS) levels, lipid peroxide (MDA) contents and superoxide dismutase (SOD) activity were measured with a fluorescence probe method and colorimetric assay, respectively. The apoptosis rate and morphology was detected and observed with hoechst 33,258 staining assay. The mRNA levels and protein expressions of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were measured by real-time fluorescence quantitative polymerase chain reaction and protein immunoblotting assay, respectively. Our results indicated that Co-treatment with ME and ATO exacerbated the cell viability decreasing reduced by ATO, while the addition of ME after ATO treatment effectively promote the recovery of ATO reduced survival rates. The ATO group increased apoptosis (P P β-cells by modulating the activation of the Nrf2 signaling pathway.展开更多
This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition...This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition of goethite-modified biochar significantly enhanced the remediation efficiency of As(III),achieving a maximum removal rate of 100%.Conversely,pure biochar exhibited high efficiency in the removal of Hg(II),with a maximum removal rate approaching 100%.Furthermore,the pH level of the water significantly influenced the adsorption efficiency of heavy metal ions,with the optimal removal performance observed at a pH of 6.0.The PRB system demonstrated excellent removal rates under low concentrations of heavy metals.However,as the concentration increased,the remediation efficiency exhibited a slight decrease.In summary,the findings of this study provide compelling evidence for the use of modified biochar in the construction of PRBs for the remediation of mercury and arsenic-polluted water bodies.Furthermore,the study reveals the mechanism by which pH and heavy metal concentration influence remediation efficiency.展开更多
Massive amounts of low-grade tin middlings have been produced from tin tailings,in which arsenic and tin are worthy to be recycled.Owing to high sulfur content in these tin middlings,a novel self-sulfurization roastin...Massive amounts of low-grade tin middlings have been produced from tin tailings,in which arsenic and tin are worthy to be recycled.Owing to high sulfur content in these tin middlings,a novel self-sulfurization roasting was proposed to transform,separate and recover arsenic and tin in this research.There was no extra curing agent to be added,which decreased the formation of pollutant S-containing gas.The self-sulfurization process involved a two-stage roasting of reduction followed by sulfurization.First in reduction roasting,FeAsS decomposed to FeS and As and the As then transformed to As_(4)(g)and As_(4)S_(4)(g),via which the arsenic was separated and recovered.The arsenic content in the first residue could be decreased to 0.72 wt.%.Accompanied with it,the FeS was firstly oxidized to Fe_(1−x)S and then to SO_(2)(g)by the coexisted Fe_(2)O_(3),and finally reduced and combined with the independent Fe_(2)O_(3)to form Fe_(1−x)S.In the followed sulfurization roasting,the Fe_(1−x)S sulfurized SnO_(2)to SnS(g),due to which tin could be recovered and its content in the second residue decreased to 0.01 wt.%.This study provided an efficient method to separate and recover arsenic and tin from low-grade tin middlings.展开更多
This study aims to reveal the occurrence and origin of typical groundwater with high arsenic and fluoride concentrations in the loess area of the Guanzhong Basin—a Neogene faulted basin.Key findings are as follows:(1...This study aims to reveal the occurrence and origin of typical groundwater with high arsenic and fluoride concentrations in the loess area of the Guanzhong Basin—a Neogene faulted basin.Key findings are as follows:(1)Groundwater samples with high arsenic and fluoride concentrations collected from the loess area and the terraces of the Weihe River accounted for 26%and 30%,respectively,of the total samples,with primary hydrochemical type identified as HCO_(3)-Na.The karst and sand areas exhibit relatively high groundwater quality,serving as preferred sources for water supply.It is recommended that local governments fully harness groundwater in these areas;(2)groundwater with high arsenic and fluoride concentrations in the loess area and the alluvial plain of rivers in Dali County is primarily distributed within the Guanzhong Basin,which represents the drainage zone of groundwater;(3)arsenic and fluoride in groundwater originate principally from natural and anthropogenic sources;(4)the human health risk assessments reveal that long-term intake of groundwater with high arsenic and fluoride concentrations pose cancer or non-cancer risks,which are more serious to kids compared to adults.This study provides a theoretical basis for the prevention and treatment of groundwater with high arsenic and fluoride concentrations in loess areas.展开更多
In this study,ferric nitrate modified carbon nanotube composites (FCNT) were prepared by isovolumetric impregnation using carbon nanotubes (CNTs) as the carrier and ferric nitrates the active agent.The batch experimen...In this study,ferric nitrate modified carbon nanotube composites (FCNT) were prepared by isovolumetric impregnation using carbon nanotubes (CNTs) as the carrier and ferric nitrates the active agent.The batch experiments showed that FCNT could effectively oxidize As(III) to As(V) and react with it to form stable iron arsenate precipitates.When the dosage of FCNT was 0.1 g·L^(–1),pH value was 5–6,reaction temperature was 35℃ and reaction time was 2 h,the best arsenic removal effect could be achieved,and the removal rate of As(V) could reach 99.1%,which was always higher than 90%under acidic conditions.The adsorption results of FCNT were found to be consistent with Langmuir adsorption by static adsorption isotherm fitting,and the maximum adsorption capacity reached 118.3 mg·g^(-1).The material phase and property analysis by scanning electron microscopy,Brunauer–Emmett–Teller,Fourier transform infrared spectoscopy,X-ray photoelectron spectroscopy and other characterization methods,as well as adsorption isotherm modeling,were used to explore the adsorption mechanism of FCNT on arsenic.It was found that FCNT has microporous structure and nanostructure,and iron nanoparticles are loosely distributed on CNTs,which makes the material have good oxidation,adsorption and magnetic separation properties.Arsenic migrates on the surface of FCNT composites is mainly removed by forming insoluble compounds and co-precipitation.All the results show that FCNT treats arsenic at low cost with high adsorption efficiency,and the results also provide the experimental data basis and theoretical basis for arsenic contamination in groundwater.展开更多
Arsenic toxicity,imposed mainly by arsenic-contaminated groundwater,is considered a critical threat to global communal health,as there is no specific and proven conventional therapy for chronic arsenic toxicity,i.e.,a...Arsenic toxicity,imposed mainly by arsenic-contaminated groundwater,is considered a critical threat to global communal health,as there is no specific and proven conventional therapy for chronic arsenic toxicity,i.e.,arsenicosis,which is an insidious global public health menace affecting 50 countries.Alternative options should,therefore,be explored for the mitigation of arsenicosis.Literature survey reveals several natural compounds from plants possess significant protective efficacy against arsenic toxicity in chiefly preclinical and few clinical investigations.The studies on the ameliorative effects of plant-derived natural compounds against arsenic toxicity published in the last 25 years are collated.Forty-eight plant-based natural compounds possess alleviative effects on experimental arsenic-induced toxicity in animals,six of which have been reported to be clinically effective in humans.A potential nutraceutical or therapeutic candidate against arsenicosis for humans may thus be developed with the help of recent advancements in research in this area,along with the currently available treatments.展开更多
Arsenic is one of the main harmful elements in industrial wastewater.How to remove arsenic has always been one of the research hotspots in academic circles.In the process of arsenic removal by traditional sulfuration,...Arsenic is one of the main harmful elements in industrial wastewater.How to remove arsenic has always been one of the research hotspots in academic circles.In the process of arsenic removal by traditional sulfuration,the use of traditional sulfurizing agent will introduce new metal cations,which will affect the recycling of acid.In this study,phosphorus pentasulfide (P_(2)S_(5)) was used as sulfurizing agent,which hydrolyzed to produce H_(3)PO_(4) and H_(2)S without introducing new metal cations.The effect of ultrasound on arsenic removal by P_(2)S_(5) was studied.Under the action of ultrasound,the utilization of P_(2)S_(5) was improved and the reaction time was shortened.The effects of S/As molar ratio and reaction time on arsenic removal rate were investigated under ultrasonic conditions.Ultrasonic enhanced heat and mass transfer so that the arsenic removal rate of 94.5%could be achieved under the conditions of S/As molar ratio of 2.1:1 and reaction time of 20 min.In the first 60 min,under the same S/As molar ratio and reaction time,the ultrasonic hydrolysis efficiency of P_(2)S_(5) was higher.This is because P_(2)S_(5) forms ([(P_(2)S_(4))])^(2+)under the ultrasonic action,and the structure is damaged,which is easier to be hydrolyzed.In addition,the precipitation after arsenic removal was characterized and analyzed by X-ray diffraction,scanning electron microscope-energy dispersive spectrometer,X-ray fluorescence spectrometer and X-ray photoelectron spectroscopy.Our research avoids the introduction of metal cations in the arsenic removal process,and shortens the reaction time.展开更多
The Tongon mine generates millions of tons of waste rock and tailings, which are stored in landfills in the vicinity of the mine. These tailings contain arsenic. The risk of soil contamination in this area is evident....The Tongon mine generates millions of tons of waste rock and tailings, which are stored in landfills in the vicinity of the mine. These tailings contain arsenic. The risk of soil contamination in this area is evident. This study assesses the arsenic contamination of soils around the mine and the health risks to the local population. Soil samples were taken from plastic bags and other materials used as working tools. Arsenic concentrations were determined by inductively coupled plasma mass spectroscopy, after the soil samples had been concentrated and digested. Metal contamination indices were used to assess the degree of soil contamination. The results obtained indicate that soils in the industrial zone of the Tongon gold mine have very high average concentrations, well above the world average for uncontaminated soils of 6 mg/kg arsenic. Geoaccumulation index values range from 1.28 to 3.40. These values highlight severe arsenic soil contamination. The human health risk assessment revealed that exposure risks are well above the critical limit of 1 and are, in descending order, children > adult women > adult men. These results indicate an ecological risk, requiring environmental monitoring, underpinned by the development of an effective remediation strategy to reduce local pollution and contamination.展开更多
The opening of the Panama Canal in 1913 increased the availability of internationally traded goods and transformed ocean-shipping by shortening travel time between the Atlantic Ocean and Pacific Ocean. The canal spark...The opening of the Panama Canal in 1913 increased the availability of internationally traded goods and transformed ocean-shipping by shortening travel time between the Atlantic Ocean and Pacific Ocean. The canal sparked the growth of port authorities and increased ship tonnage on both coasts of Panama. Since the construction of the Panama Canal, in the 1910s, pesticides, herbicides and chemicals, including arsenic, have been essential for controlling wetland vegetation, including hyacinth, which blocked rivers, lakes, and the canal as well as managing mosquitoes. Pesticides and chemicals flowed into Lake Gatun (reservoir) either attached to sediment or in solution during the monsoon season. Lake Gatun was the drinking water source for most of the people living in the Panama Canal Zone. The United States military base commanders had the ability to order and use cacodylic acid (arsenic based) from the Naval Depot Supply Federal and Stock Catalog and the later Federal Supply Catalog on the military base grounds in the Panama Canal Zone. Cacodylic acid was shipped to Panama Canal Zone ports, including Balboa and Cristobal, and distributed to the military bases by rail or truck. The objective of this study is to determine the fate of arsenic: 1) applied between 1914 and 1935 to Panama Canal shipping lane hyacinth and other wetland vegetation and 2) cacodylic acid (arsenic) sprayed from 1948 to 1999 on the US military base grounds in the Panama Canal Zone.展开更多
A process was proposed for removing and stabilizing arsenic(As) from anode slime. The anode slime with high arsenic concentration was pretreated by circular alkaline leaching process. Then, the arsenic in the leaching...A process was proposed for removing and stabilizing arsenic(As) from anode slime. The anode slime with high arsenic concentration was pretreated by circular alkaline leaching process. Then, the arsenic in the leaching solution can be further precipitated as a form of scorodite crystalline(FeAsO4·2H2O). In the precipitating arsenic reaction, in which ferrous ions were oxidized by air gas, the effects of acidity(p H), reaction temperature, air flow rate, initial concentration of arsenic and initial molar ratio of Fe(II) to As(V) on arsenic precipitation were investigated. The results showed that sufficiently stable crystal scorodite could be achieved under the condition of initial arsenic concentration of 10 g/L, pH 3.0-4.0, Fe/As molar ratio of 1.5, the temperature of 80-95 °C, and the air flow rate higher than 120 L/h. Under the optimal condition, more than 78% of arsenic could be precipitated as a form of scorodite crystalline. The As leaching concentration of the precipitates was less than 2.0 mg/L and the precipitates may be considered to be safe for disposal.展开更多
Arsenic is selectively extracted from high-arsenic dust by NaOH-Na2S alkaline leaching process. In the leaching arsenic process, the effects of alkali-to-dust ratio, sodium sulfide addition, leaching temperature, leac...Arsenic is selectively extracted from high-arsenic dust by NaOH-Na2S alkaline leaching process. In the leaching arsenic process, the effects of alkali-to-dust ratio, sodium sulfide addition, leaching temperature, leaching time and liquid-to-solid ratio on metals leaching efficiencies were investigated. The results show that the arsenic can be effectively separated from other metals under the optimum conditions of alkali/dust mass ratio of 0.5, sodium sulfide addition of 0.25 g/g, leaching temperature of 90 ℃, leaching time of 2 h, and liquid-to-solid ratio of 5:1 (mL/g). Under these conditions, the average leaching efficiencies of arsenic, antimony, lead, tin and zinc are 92.75%, 11.68%, 0.31%, 29.75% and 36.85%, respectively. The NaOH-Na2S alkaline leaching process provides a simple and highly efficient way to remove arsenic from high-arsenic dust, leaving residue as a suitable lead resource.展开更多
[Objective] The aim was to develop a rapid, simple method for determina- tion of arsenic and mercury in soil samples by atomic fluorescence spectrometry. [Method] The method for determination of As and Hg in soil by c...[Objective] The aim was to develop a rapid, simple method for determina- tion of arsenic and mercury in soil samples by atomic fluorescence spectrometry. [Method] The method for determination of As and Hg in soil by combined atomic fluorescence spectrometry and microwave digestion was used. [Result] The concentration curve was linear within the range of 0-80.0μg/L of As and 0-8.0 μg/L of Hg, and the detection limits of As and Hg was 0.036 μg/L and 0.015 μg/L, respectively. The precision for elevenfold determination of As at 40.0 ug/L level and Hg at 4.0μg/L level were 1.1% and 2.2%(RSD), respectively. Recoveries of 103.0%-106.6% for As and 90.0%-95.0% for Hg were obtained for there soil samples. [Conclusion] The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for determination of As and Hg in soil samples.展开更多
The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observa...The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observations of 9 cruises carried out in 2000 - 2003. The study area covers a broad range of hydrographic and chemical properties. The emphasis is put on a southeast transect from Changjiang Estuary to the Ryukyu Islands (i.e. PN section) in the East China Sea to discuss the impact of terrestdal input on the marginal seas of China. Arsenic species (TDlAs and arsenite) are determined by selective hydride generation - atomic fluorescence spectrometry (HG-AFS). TDIAs concentrations were high in the coastal area of Changjiang Estuary and decreased slightly towards the shelf region. High concentratiOns of TDIAs were also existed in the near bottom layer of shelf edge of the East China Sea which indicated another source of arsenic from the incursion of Kuroshio Waters. The seasonal variations of TDIAs in the study area depend on the hydrographic stages of Changjiang and the incursion intensity of Kuroshio Waters. Arsenite showed opposite distributions with TDIAs, with higher concentrations appeared at the surface layer of shelf region, which was positive correlated with the chlorophyll a. Biological conversion of arsenate into arsenite was hypothesized for the observed distribution pattern and its seasonal variations. The stoichoimetric ratios of As to P were estimated to be about 2×10^3 at PN Section in summer. The concentrations of dissolved arsenic in the Yellow Sea and East China Sea were comparable with other areas in the world.展开更多
基金supported from the National Natural Science Foundation of China(No.52304148)the Youth Project of Shanxi Basic Research Program,China(No.202203021212262).
文摘The substantial arsenic(As)content present in arsenic-containing bio-leaching residue(ABR)presents noteworthy environ-mental challenges attributable to its inherent instability and susceptibility to leaching.Given its elevated calcium sulfate content,ABR exhibits considerable promise for industrial applications.This study delved into the feasibility of utilizing ABR as a source of sulfates for producing super sulfated cement(SSC),offering an innovative binder for cemented paste backfill(CPB).Thermal treatment at varying temperatures of 150,350,600,and 800℃ was employed to modify ABR’s performance.The investigation encompassed the examination of phase transformations and alterations in the chemical composition of As within ABR.Subsequently,the hydration characteristics of SSC utilizing ABR,with or without thermal treatment,were studied,encompassing reaction kinetics,setting time,strength development,and microstructure.The findings revealed that thermal treatment changed the calcium sulfate structure in ABR,consequently impacting the resultant sample performance.Notably,calcination at 600℃ demonstrated optimal modification effects on both early and long-term strength attributes.This enhanced performance can be attributed to the augmented formation of reaction products and a densified micro-structure.Furthermore,the thermal treatment elicited modifications in the chemical As fractions within ABR,with limited impact on the As immobilization capacity of the prepared binders.
文摘Lagoons are ecosystems for biodiversity and the livelihoods of coastal communities. The main objective of the study was to analyze the variability of arsenic concentrations in gastropods and bivalves in the Aby and Tendo lagoons, taking into account spatial, seasonal and hydrological variations. The study was carried out in four stages spread over two successive hydroclimatic cycles, including two seasons during the rainy season and two more during the dry season. The samples were taken in two areas of the Aby and Tendo lagoons. Arsenic levels were measured by ICP-MS. The results showed that mean arsenic concentrations in the muscles of organisms in Aby Lagoon ranged from 0.01 to 1.26 μg As/g, with a mean and median of 0.17 and 0.06 μg As/g, respectively. Fish had the highest levels of arsenic, followed by crustaceans, while molluscs and plants had lower and comparable concentrations of As. Arsenic concentrations in tilapia and jawbones varied significantly between sites and seasons, with higher concentrations at Tendo and during the rainy season. Arsenic concentrations in gastropods and bivalves were significantly higher than those of other species, with averages of 0.74 and 1.03 mg As/kg, respectively.
文摘Roles of Marigold extracts (ME) on arsenic trioxide (ATO)-induced oxidative damage to pancreatic β-cells need to be further elucidated. In this study, NIT-1 cells were treated with different concentrations of and/or ATO, following by the cell viability was detected by CCK8 assay. Then, intracellular reactive oxygen species (ROS) levels, lipid peroxide (MDA) contents and superoxide dismutase (SOD) activity were measured with a fluorescence probe method and colorimetric assay, respectively. The apoptosis rate and morphology was detected and observed with hoechst 33,258 staining assay. The mRNA levels and protein expressions of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were measured by real-time fluorescence quantitative polymerase chain reaction and protein immunoblotting assay, respectively. Our results indicated that Co-treatment with ME and ATO exacerbated the cell viability decreasing reduced by ATO, while the addition of ME after ATO treatment effectively promote the recovery of ATO reduced survival rates. The ATO group increased apoptosis (P P β-cells by modulating the activation of the Nrf2 signaling pathway.
文摘This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition of goethite-modified biochar significantly enhanced the remediation efficiency of As(III),achieving a maximum removal rate of 100%.Conversely,pure biochar exhibited high efficiency in the removal of Hg(II),with a maximum removal rate approaching 100%.Furthermore,the pH level of the water significantly influenced the adsorption efficiency of heavy metal ions,with the optimal removal performance observed at a pH of 6.0.The PRB system demonstrated excellent removal rates under low concentrations of heavy metals.However,as the concentration increased,the remediation efficiency exhibited a slight decrease.In summary,the findings of this study provide compelling evidence for the use of modified biochar in the construction of PRBs for the remediation of mercury and arsenic-polluted water bodies.Furthermore,the study reveals the mechanism by which pH and heavy metal concentration influence remediation efficiency.
基金Project(52174384)supported by the National Natural Science Foundation of ChinaProject(LZB2021003)supported by Fundamental Research Funds for the Central Universities,China。
文摘Massive amounts of low-grade tin middlings have been produced from tin tailings,in which arsenic and tin are worthy to be recycled.Owing to high sulfur content in these tin middlings,a novel self-sulfurization roasting was proposed to transform,separate and recover arsenic and tin in this research.There was no extra curing agent to be added,which decreased the formation of pollutant S-containing gas.The self-sulfurization process involved a two-stage roasting of reduction followed by sulfurization.First in reduction roasting,FeAsS decomposed to FeS and As and the As then transformed to As_(4)(g)and As_(4)S_(4)(g),via which the arsenic was separated and recovered.The arsenic content in the first residue could be decreased to 0.72 wt.%.Accompanied with it,the FeS was firstly oxidized to Fe_(1−x)S and then to SO_(2)(g)by the coexisted Fe_(2)O_(3),and finally reduced and combined with the independent Fe_(2)O_(3)to form Fe_(1−x)S.In the followed sulfurization roasting,the Fe_(1−x)S sulfurized SnO_(2)to SnS(g),due to which tin could be recovered and its content in the second residue decreased to 0.01 wt.%.This study provided an efficient method to separate and recover arsenic and tin from low-grade tin middlings.
基金funded by the ministry-province cooperation-based pilot project entitled A Technological System for Ecological Remediation Evaluation of Open-Pit Mines initiated by the Ministry of Natural Resources in 2023(2023-03)survey projects of the Land and Resources Investigation Program([2023]06-03-04,1212010634713)a key R&D projects of Shaanxi Province in 2023(2023ZDLSF-63)。
文摘This study aims to reveal the occurrence and origin of typical groundwater with high arsenic and fluoride concentrations in the loess area of the Guanzhong Basin—a Neogene faulted basin.Key findings are as follows:(1)Groundwater samples with high arsenic and fluoride concentrations collected from the loess area and the terraces of the Weihe River accounted for 26%and 30%,respectively,of the total samples,with primary hydrochemical type identified as HCO_(3)-Na.The karst and sand areas exhibit relatively high groundwater quality,serving as preferred sources for water supply.It is recommended that local governments fully harness groundwater in these areas;(2)groundwater with high arsenic and fluoride concentrations in the loess area and the alluvial plain of rivers in Dali County is primarily distributed within the Guanzhong Basin,which represents the drainage zone of groundwater;(3)arsenic and fluoride in groundwater originate principally from natural and anthropogenic sources;(4)the human health risk assessments reveal that long-term intake of groundwater with high arsenic and fluoride concentrations pose cancer or non-cancer risks,which are more serious to kids compared to adults.This study provides a theoretical basis for the prevention and treatment of groundwater with high arsenic and fluoride concentrations in loess areas.
基金supported by the National Natural Science Foundation of China (NSFC) on the micro behavior of heavy metal migration and transformation in lead–zinc tailings and its nano micro scale high targeted stabilization mechanism (51968033)the National Key Research and Development Program “long-term solidification of heavy metal tailings pollution/environmental functional materials, technologies and equipment of stabilizers” (2018YFC1801702)。
文摘In this study,ferric nitrate modified carbon nanotube composites (FCNT) were prepared by isovolumetric impregnation using carbon nanotubes (CNTs) as the carrier and ferric nitrates the active agent.The batch experiments showed that FCNT could effectively oxidize As(III) to As(V) and react with it to form stable iron arsenate precipitates.When the dosage of FCNT was 0.1 g·L^(–1),pH value was 5–6,reaction temperature was 35℃ and reaction time was 2 h,the best arsenic removal effect could be achieved,and the removal rate of As(V) could reach 99.1%,which was always higher than 90%under acidic conditions.The adsorption results of FCNT were found to be consistent with Langmuir adsorption by static adsorption isotherm fitting,and the maximum adsorption capacity reached 118.3 mg·g^(-1).The material phase and property analysis by scanning electron microscopy,Brunauer–Emmett–Teller,Fourier transform infrared spectoscopy,X-ray photoelectron spectroscopy and other characterization methods,as well as adsorption isotherm modeling,were used to explore the adsorption mechanism of FCNT on arsenic.It was found that FCNT has microporous structure and nanostructure,and iron nanoparticles are loosely distributed on CNTs,which makes the material have good oxidation,adsorption and magnetic separation properties.Arsenic migrates on the surface of FCNT composites is mainly removed by forming insoluble compounds and co-precipitation.All the results show that FCNT treats arsenic at low cost with high adsorption efficiency,and the results also provide the experimental data basis and theoretical basis for arsenic contamination in groundwater.
文摘Arsenic toxicity,imposed mainly by arsenic-contaminated groundwater,is considered a critical threat to global communal health,as there is no specific and proven conventional therapy for chronic arsenic toxicity,i.e.,arsenicosis,which is an insidious global public health menace affecting 50 countries.Alternative options should,therefore,be explored for the mitigation of arsenicosis.Literature survey reveals several natural compounds from plants possess significant protective efficacy against arsenic toxicity in chiefly preclinical and few clinical investigations.The studies on the ameliorative effects of plant-derived natural compounds against arsenic toxicity published in the last 25 years are collated.Forty-eight plant-based natural compounds possess alleviative effects on experimental arsenic-induced toxicity in animals,six of which have been reported to be clinically effective in humans.A potential nutraceutical or therapeutic candidate against arsenicosis for humans may thus be developed with the help of recent advancements in research in this area,along with the currently available treatments.
基金support of the Basic Research Project of Science and Technology Planning Project of Yunnan Provincial Department of Science and Technology (202201AS070031)Yunnan Pronince Top young talents of The Ten Thousand Project+4 种基金the central government guides local science and technology development projects (CB22005R006A)the National Key Research and Development Program of China (2019YFC1904204)Kunming Key Laboratory of Special MetallurgyKunming Academician Workstation of Advanced Preparation for Super hard Materials FieldKunming Academician Workstation of Metallurgical Process Intensification。
文摘Arsenic is one of the main harmful elements in industrial wastewater.How to remove arsenic has always been one of the research hotspots in academic circles.In the process of arsenic removal by traditional sulfuration,the use of traditional sulfurizing agent will introduce new metal cations,which will affect the recycling of acid.In this study,phosphorus pentasulfide (P_(2)S_(5)) was used as sulfurizing agent,which hydrolyzed to produce H_(3)PO_(4) and H_(2)S without introducing new metal cations.The effect of ultrasound on arsenic removal by P_(2)S_(5) was studied.Under the action of ultrasound,the utilization of P_(2)S_(5) was improved and the reaction time was shortened.The effects of S/As molar ratio and reaction time on arsenic removal rate were investigated under ultrasonic conditions.Ultrasonic enhanced heat and mass transfer so that the arsenic removal rate of 94.5%could be achieved under the conditions of S/As molar ratio of 2.1:1 and reaction time of 20 min.In the first 60 min,under the same S/As molar ratio and reaction time,the ultrasonic hydrolysis efficiency of P_(2)S_(5) was higher.This is because P_(2)S_(5) forms ([(P_(2)S_(4))])^(2+)under the ultrasonic action,and the structure is damaged,which is easier to be hydrolyzed.In addition,the precipitation after arsenic removal was characterized and analyzed by X-ray diffraction,scanning electron microscope-energy dispersive spectrometer,X-ray fluorescence spectrometer and X-ray photoelectron spectroscopy.Our research avoids the introduction of metal cations in the arsenic removal process,and shortens the reaction time.
文摘The Tongon mine generates millions of tons of waste rock and tailings, which are stored in landfills in the vicinity of the mine. These tailings contain arsenic. The risk of soil contamination in this area is evident. This study assesses the arsenic contamination of soils around the mine and the health risks to the local population. Soil samples were taken from plastic bags and other materials used as working tools. Arsenic concentrations were determined by inductively coupled plasma mass spectroscopy, after the soil samples had been concentrated and digested. Metal contamination indices were used to assess the degree of soil contamination. The results obtained indicate that soils in the industrial zone of the Tongon gold mine have very high average concentrations, well above the world average for uncontaminated soils of 6 mg/kg arsenic. Geoaccumulation index values range from 1.28 to 3.40. These values highlight severe arsenic soil contamination. The human health risk assessment revealed that exposure risks are well above the critical limit of 1 and are, in descending order, children > adult women > adult men. These results indicate an ecological risk, requiring environmental monitoring, underpinned by the development of an effective remediation strategy to reduce local pollution and contamination.
文摘The opening of the Panama Canal in 1913 increased the availability of internationally traded goods and transformed ocean-shipping by shortening travel time between the Atlantic Ocean and Pacific Ocean. The canal sparked the growth of port authorities and increased ship tonnage on both coasts of Panama. Since the construction of the Panama Canal, in the 1910s, pesticides, herbicides and chemicals, including arsenic, have been essential for controlling wetland vegetation, including hyacinth, which blocked rivers, lakes, and the canal as well as managing mosquitoes. Pesticides and chemicals flowed into Lake Gatun (reservoir) either attached to sediment or in solution during the monsoon season. Lake Gatun was the drinking water source for most of the people living in the Panama Canal Zone. The United States military base commanders had the ability to order and use cacodylic acid (arsenic based) from the Naval Depot Supply Federal and Stock Catalog and the later Federal Supply Catalog on the military base grounds in the Panama Canal Zone. Cacodylic acid was shipped to Panama Canal Zone ports, including Balboa and Cristobal, and distributed to the military bases by rail or truck. The objective of this study is to determine the fate of arsenic: 1) applied between 1914 and 1935 to Panama Canal shipping lane hyacinth and other wetland vegetation and 2) cacodylic acid (arsenic) sprayed from 1948 to 1999 on the US military base grounds in the Panama Canal Zone.
基金Projects(51304251,51374237)supported by the National Natural Science Foundation of ChinaProject(201509050)supported by Special Program on Environmental Protection for Public Welfare,ChinaProjects(2012FJ1010,2014FJ1011)supported by the Key Projects of Science and Technology of Hunan Province,China
文摘A process was proposed for removing and stabilizing arsenic(As) from anode slime. The anode slime with high arsenic concentration was pretreated by circular alkaline leaching process. Then, the arsenic in the leaching solution can be further precipitated as a form of scorodite crystalline(FeAsO4·2H2O). In the precipitating arsenic reaction, in which ferrous ions were oxidized by air gas, the effects of acidity(p H), reaction temperature, air flow rate, initial concentration of arsenic and initial molar ratio of Fe(II) to As(V) on arsenic precipitation were investigated. The results showed that sufficiently stable crystal scorodite could be achieved under the condition of initial arsenic concentration of 10 g/L, pH 3.0-4.0, Fe/As molar ratio of 1.5, the temperature of 80-95 °C, and the air flow rate higher than 120 L/h. Under the optimal condition, more than 78% of arsenic could be precipitated as a form of scorodite crystalline. The As leaching concentration of the precipitates was less than 2.0 mg/L and the precipitates may be considered to be safe for disposal.
基金Project(2012AA04022)supported by the Scientific Research and Technology Development Project of Guangxi,China
文摘Arsenic is selectively extracted from high-arsenic dust by NaOH-Na2S alkaline leaching process. In the leaching arsenic process, the effects of alkali-to-dust ratio, sodium sulfide addition, leaching temperature, leaching time and liquid-to-solid ratio on metals leaching efficiencies were investigated. The results show that the arsenic can be effectively separated from other metals under the optimum conditions of alkali/dust mass ratio of 0.5, sodium sulfide addition of 0.25 g/g, leaching temperature of 90 ℃, leaching time of 2 h, and liquid-to-solid ratio of 5:1 (mL/g). Under these conditions, the average leaching efficiencies of arsenic, antimony, lead, tin and zinc are 92.75%, 11.68%, 0.31%, 29.75% and 36.85%, respectively. The NaOH-Na2S alkaline leaching process provides a simple and highly efficient way to remove arsenic from high-arsenic dust, leaving residue as a suitable lead resource.
基金Supported by Key Fund of Guangxi Academy of Agricultural Sciences(2013YZ07)~~
文摘[Objective] The aim was to develop a rapid, simple method for determina- tion of arsenic and mercury in soil samples by atomic fluorescence spectrometry. [Method] The method for determination of As and Hg in soil by combined atomic fluorescence spectrometry and microwave digestion was used. [Result] The concentration curve was linear within the range of 0-80.0μg/L of As and 0-8.0 μg/L of Hg, and the detection limits of As and Hg was 0.036 μg/L and 0.015 μg/L, respectively. The precision for elevenfold determination of As at 40.0 ug/L level and Hg at 4.0μg/L level were 1.1% and 2.2%(RSD), respectively. Recoveries of 103.0%-106.6% for As and 90.0%-95.0% for Hg were obtained for there soil samples. [Conclusion] The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for determination of As and Hg in soil samples.
基金funded by National Science Foundation of China (No. 40606028)National Basic Research Programs of China (No. 2006CB400601and 2001CB409703)
文摘The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observations of 9 cruises carried out in 2000 - 2003. The study area covers a broad range of hydrographic and chemical properties. The emphasis is put on a southeast transect from Changjiang Estuary to the Ryukyu Islands (i.e. PN section) in the East China Sea to discuss the impact of terrestdal input on the marginal seas of China. Arsenic species (TDlAs and arsenite) are determined by selective hydride generation - atomic fluorescence spectrometry (HG-AFS). TDIAs concentrations were high in the coastal area of Changjiang Estuary and decreased slightly towards the shelf region. High concentratiOns of TDIAs were also existed in the near bottom layer of shelf edge of the East China Sea which indicated another source of arsenic from the incursion of Kuroshio Waters. The seasonal variations of TDIAs in the study area depend on the hydrographic stages of Changjiang and the incursion intensity of Kuroshio Waters. Arsenite showed opposite distributions with TDIAs, with higher concentrations appeared at the surface layer of shelf region, which was positive correlated with the chlorophyll a. Biological conversion of arsenate into arsenite was hypothesized for the observed distribution pattern and its seasonal variations. The stoichoimetric ratios of As to P were estimated to be about 2×10^3 at PN Section in summer. The concentrations of dissolved arsenic in the Yellow Sea and East China Sea were comparable with other areas in the world.