A novel artificial bee colony algorithm was introduced for the eruption event of the Sakurajima volcano on August 9,2020,to invert the magma source characteristics below the volcano based on the point source Mogi mode...A novel artificial bee colony algorithm was introduced for the eruption event of the Sakurajima volcano on August 9,2020,to invert the magma source characteristics below the volcano based on the point source Mogi model.Considering that the Sakurajima volcano is surrounded by sea,all the deformation data are used to obtain the location and magma eruption volume of the volcano.In response to the weak local search capability of the artificial swarm algorithm,the difference between the global optimal individual and the un-roulette screened individual is introduced as the variance component in the onlooker stage.Detailed simulation experiments verify the improvement of the algorithm in terms of convergence speed.In real experiments,the Sakurajima volcano inversion shows closer fitting results and smaller residuals compared to the existing literature.Meanwhile,the convergence speed of the algorithm echoes with the simulation experiments.展开更多
Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the chall...Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental.展开更多
Distribution generation(DG)technology based on a variety of renewable energy technologies has developed rapidly.A large number of multi-type DG are connected to the distribution network(DN),resulting in a decline in t...Distribution generation(DG)technology based on a variety of renewable energy technologies has developed rapidly.A large number of multi-type DG are connected to the distribution network(DN),resulting in a decline in the stability of DN operation.It is urgent to find a method that can effectively connect multi-energy DG to DN.photovoltaic(PV),wind power generation(WPG),fuel cell(FC),and micro gas turbine(MGT)are considered in this paper.A multi-objective optimization model was established based on the life cycle cost(LCC)of DG,voltage quality,voltage fluctuation,system network loss,power deviation of the tie-line,DG pollution emission index,and meteorological index weight of DN.Multi-objective artificial bee colony algorithm(MOABC)was used to determine the optimal location and capacity of the four kinds of DG access DN,and compared with the other three heuristic algorithms.Simulation tests based on IEEE 33 test node and IEEE 69 test node show that in IEEE 33 test node,the total voltage deviation,voltage fluctuation,and system network loss of DN decreased by 49.67%,7.47%and 48.12%,respectively,compared with that without DG configuration.In the IEEE 69 test node,the total voltage deviation,voltage fluctuation and system network loss of DN in the MOABC configuration scheme decreased by 54.98%,35.93%and 75.17%,respectively,compared with that without DG configuration,indicating that MOABC can reasonably plan the capacity and location of DG.Achieve the maximum trade-off between DG economy and DN operation stability.展开更多
A discrete artificial bee colony algorithm is proposed for solving the blocking flow shop scheduling problem with total flow time criterion. Firstly, the solution in the algorithm is represented as job permutation. Se...A discrete artificial bee colony algorithm is proposed for solving the blocking flow shop scheduling problem with total flow time criterion. Firstly, the solution in the algorithm is represented as job permutation. Secondly, an initialization scheme based on a variant of the NEH (Nawaz-Enscore-Ham) heuristic and a local search is designed to construct the initial population with both quality and diversity. Thirdly, based on the idea of iterated greedy algorithm, some newly designed schemes for employed bee, onlooker bee and scout bee are presented. The performance of the proposed algorithm is tested on the well-known Taillard benchmark set, and the computational results demonstrate the effectiveness of the discrete artificial bee colony algorithm. In addition, the best known solutions of the benchmark set are provided for the blocking flow shop scheduling problem with total flow time criterion.展开更多
Unlike a traditional flowshop problem where a job is assumed to be indivisible, in the lot-streaming flowshop problem, a job is allowed to overlap its operations between successive machines by splitting it into a numb...Unlike a traditional flowshop problem where a job is assumed to be indivisible, in the lot-streaming flowshop problem, a job is allowed to overlap its operations between successive machines by splitting it into a number of smaller sub-lots and moving the completed portion of the sub-lots to downstream machine. In this way, the production is accelerated. This paper presents a discrete artificial bee colony (DABC) algorithm for a lot-streaming flowshop scheduling problem with total flowtime criterion. Unlike the basic ABC algorithm, the proposed DABC algorithm represents a solution as a discrete job permutation. An efficient initialization scheme based on the extended Nawaz-Enscore-Ham heuristic is utilized to produce an initial population with a certain level of quality and diversity. Employed and onlooker bees generate new solutions in their neighborhood, whereas scout bees generate new solutions by performing insert operator and swap operator to the best solution found so far. Moreover, a simple but effective local search is embedded in the algorithm to enhance local exploitation capability. A comparative experiment is carried out with the existing discrete particle swarm optimization, hybrid genetic algorithm, threshold accepting, simulated annealing and ant colony optimization algorithms based on a total of 160 randomly generated instances. The experimental results show that the proposed DABC algorithm is quite effective for the lot-streaming flowshop with total flowtime criterion in terms of searching quality, robustness and effectiveness. This research provides the references to the optimization research on lot-streaming flowshop.展开更多
To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model),we use an impr...To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model),we use an improved artificial bee colony algorithm without derivative and the bootstrap method to estimate the parameters and evaluate the accuracy of MAM error model.The improved artificial bee colony algorithm can update individuals in multiple dimensions and improve the cooperation ability between individuals by constructing a new search equation based on the idea of quasi-affine transformation.The experimental results show that based on the weighted least squares criterion,the algorithm can get the results consistent with the weighted least squares method without multiple formula derivation.The parameter estimation and accuracy evaluation method based on the bootstrap method can get better parameter estimation and more reasonable accuracy information than existing methods,which provides a new idea for the theory of parameter estimation and accuracy evaluation of the MAM error model.展开更多
The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs ...The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs well in most cases, however, there still exists an insufficiency in the ABC algorithm that ignores the fitness of related pairs of individuals in the mechanism of find- ing a neighboring food source. This paper presents an improved ABC algorithm with mutual learning (MutualABC) that adjusts the produced candidate food source with the higher fitness between two individuals selected by a mutual learning factor. The perfor- mance of the improved MutualABC algorithm is tested on a set of benchmark functions and compared with the basic ABC algo- rithm and some classical versions of improved ABC algorithms. The experimental results show that the MutualABC algorithm with appropriate parameters outperforms other ABC algorithms in most experiments.展开更多
The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the proble...The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in- sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA called Archimedean copula estima- tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench- mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen- tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.展开更多
An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effecti...An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effective combination of the insertion and swap operator is applied to producing neighborhood individual at the employed bee phase. The tournament selection is adopted to avoid falling into local optima, while, the optimized insert operator embeds in onlooker bee phase for further searching the neighborhood solution to enhance the local search ability of algorithm. The tournament selection with size 2 is again applied and a better selected solution will be performed destruction and construction of iterated greedy(IG) algorithm, and then the result replaces the worse one. Simulation results show that our algorithm has a better performance compared with the HDDE and CHS which were proposed recently. It provides the better known solutions for the makespan criterion to flow shop scheduling problem with limited buffers for the Car benchmark by Carlier and Rec benchmark by Reeves. The convergence curves show that the algorithm not only has faster convergence speed but also has better convergence value.展开更多
The operating state of bearing affects the performance of rotating machinery;thus,how to accurately extract features from the original vibration signals and recognise the faulty parts as early as possible is very crit...The operating state of bearing affects the performance of rotating machinery;thus,how to accurately extract features from the original vibration signals and recognise the faulty parts as early as possible is very critical.In this study,the one‐dimensional ternary model which has been proved to be an effective statistical method in feature selection is introduced and shapelet transformation is proposed to calculate the parameter of one‐dimensional ternary model that is usually selected by trial and error.Then XGBoost is used to recognise the faults from the obtained features,and artificial bee colony algorithm(ABC)is introduced to optimise the parameters of XGBoost.Moreover,for improving the performance of intelligent algorithm,an improved strategy where the evolution is guided by the probability that the optimal solution appears in certain solution space is proposed.The experimental results based on the failure vibration signal samples show that the average accuracy of fault signal recognition can reach 97%,which is much higher than the ones corresponding to traditional extraction strategies.And with the help of improved ABC algorithm,the performance of XGBoost classifier could be optimised;the accuracy could be improved from 97.02%to 98.60%compared with the traditional classification strategy.展开更多
In the paper, a new selection probability inspired by artificial bee colony algorithm is introduced into standard particle swarm optimization by improving the global extremum updating condition to enhance the capabili...In the paper, a new selection probability inspired by artificial bee colony algorithm is introduced into standard particle swarm optimization by improving the global extremum updating condition to enhance the capability of its overall situation search. The experiment result shows that the new scheme is more valuable and effective than other schemes in the convergence of codebook design and the performance of codebook, and it can avoid the premature phenomenon of the particles.展开更多
With the continuous development of science and technology,electronic devices have begun to enter all aspects of human life,becoming increasingly closely related to human life.Users have higher quality requirements for...With the continuous development of science and technology,electronic devices have begun to enter all aspects of human life,becoming increasingly closely related to human life.Users have higher quality requirements for electronic devices.Electronic device testing has gradually become an irreplaceable engineering process in modern manufacturing enterprises to guarantee the quality of products while preventing inferior products from entering the market.Considering the large output of electronic devices,improving the testing efficiency while reducing the testing cost has become an urgent problem to be solved.This study investigates the electronic device testing machine allocation problem(EDTMAP),aiming to improve the production of electronic devices and reduce the scheduling distance among testing machines through reasonable machine allocation.First,a mathematical model was formulated for the EDTMAP to maximize both production and the scheduling distance among testing machines.Second,we developed a discrete multi-objective artificial bee colony(DMOABC)algorithm to solve EDTMAP.A crossover operator and local search operator were designed to improve the exploration and exploitation of the algorithm,respectively.Numerical experiments were conducted to evaluate the performance of the proposed algorithm.The experimental results demonstrate the superiority of the proposed algorithm compared with the non-dominated sorting genetic algorithm II(NSGA-II)and strength Pareto evolutionary algorithm 2(SPEA2).Finally,the mathematical model and DMOABC algorithm were applied to a real-world factory that tests radio-frequency modules.The results verify that our method can significantly improve production and reduce the scheduling distance among testing machines.展开更多
For a class of aeroengine nonlinear systems,a novel nonlinear sliding mode controller(SMC)design method based on artificial bee colony(ABC)algorithm is proposed.In view of the strong nonlinearity and uncertainty of ae...For a class of aeroengine nonlinear systems,a novel nonlinear sliding mode controller(SMC)design method based on artificial bee colony(ABC)algorithm is proposed.In view of the strong nonlinearity and uncertainty of aeroengines,sliding mode control strategy is adopted to design controller for the aeroengine.On basis of exact linearization approach,the nonlinear sliding mode controller is obtained conveniently.By using ABC algorithm,the parameters in the designed controller can be tuned to achieve optimal performance,resulting in a closedloop system with satisfactory dynamic performance and high steady accuracy.Simulation on an aeroengine verifies the effectiveness of the presented method.展开更多
Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class unifo...Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class uniformity of gray level,a method of reciprocal gray entropy threshold selection is proposed based on two-dimensional(2-D)histogram region oblique division and artificial bee colony(ABC)optimization.Firstly,the definition of reciprocal gray entropy is introduced.Then on the basis of one-dimensional(1-D)method,2-D threshold selection criterion function based on reciprocal gray entropy with histogram oblique division is derived.To accelerate the progress of searching the optimal threshold,the recently proposed ABC optimization algorithm is adopted.The proposed method not only avoids the undefined value points in Shannon entropy,but also achieves high accuracy and anti-noise performance due to reasonable 2-D histogram region division and the consideration of within-class uniformity of gray level.A large number of experimental results show that,compared with the maximum Shannon entropy method with 2-D histogram oblique division and the reciprocal entropy method with 2-D histogram oblique division based on niche chaotic mutation particle swarm optimization(NCPSO),the proposed method can achieve better segmentation results and can satisfy the requirement of real-time processing.展开更多
Being as unique nonlinear components of block ciphers,substitution boxes(S-boxes) directly affect the security of the cryptographic systems.It is important and difficult to design cryptographically strong S-boxes th...Being as unique nonlinear components of block ciphers,substitution boxes(S-boxes) directly affect the security of the cryptographic systems.It is important and difficult to design cryptographically strong S-boxes that simultaneously meet with multiple cryptographic criteria such as bijection,non-linearity,strict avalanche criterion(SAC),bits independence criterion(BIC),differential probability(DP) and linear probability(LP).To deal with this problem,a chaotic S-box based on the artificial bee colony algorithm(CSABC) is designed.It uses the S-boxes generated by the six-dimensional compound hyperchaotic map as the initial individuals and employs ABC to improve their performance.In addition,it considers the nonlinearity and differential uniformity as the fitness functions.A series of experiments have been conducted to compare multiple cryptographic criteria of this algorithm with other algorithms.Simulation results show that the new algorithm has cryptographically strong S-box while meeting multiple cryptographic criteria.展开更多
Internet of things(IoT) imposes new challenges on service composition as it is difficult to manage a quick instantiation of a complex services from a growing number of dynamic candidate services. A cross-modified Arti...Internet of things(IoT) imposes new challenges on service composition as it is difficult to manage a quick instantiation of a complex services from a growing number of dynamic candidate services. A cross-modified Artificial Bee Colony Algorithm(CMABC) is proposed to achieve the optimal solution services in an acceptable time and high accuracy. Firstly, web service instantiation model was established. What is more, to overcome the problem of discrete and chaotic solution space, the global optimal solution was used to accelerate convergence rate by imitating the cross operation of Genetic algorithm(GA). The simulation experiment result shows that CMABC exhibited faster convergence speed and better convergence accuracy than some other intelligent optimization algorithms.展开更多
In order to solve the problems of multi-parameter,multi-extreme and multi-solution in the nonlinear iterative optimization process of Rayleigh wave inversion,the artificial bee colony(ABC)algorithm is selected for glo...In order to solve the problems of multi-parameter,multi-extreme and multi-solution in the nonlinear iterative optimization process of Rayleigh wave inversion,the artificial bee colony(ABC)algorithm is selected for global nonlinear inversion.The global nonlinear inversion method does not rely on a strict initial model and does not need to calculate the derivative of the objective function.The ABC algorithm uses the local optimization behavior of each individual artificial bee to finally highlight the global optimal value in the colony,and the convergence speed is faster.While searching for the global optimal solution,an effective local search can also be performed to ensure the reliability of the inversion results.This paper uses the ABC algorithm to perform Rayleigh wave dispersion inversion on the actual seismic data to obtain a clear undergrounding of shear wave velocity profile and accurately identify the location of the high-velocity interlayer.It is verified that the ABC algorithm used in the inversion of the Rayleigh wave dispersion curve is stable and converges quickly.展开更多
A bus network design problem in a suburban area of Hong Kong is studied.The objective is to minimize the weighted sum of the number of transfers and the total travel time of passengers by restructuring bus routes and ...A bus network design problem in a suburban area of Hong Kong is studied.The objective is to minimize the weighted sum of the number of transfers and the total travel time of passengers by restructuring bus routes and determining new frequencies.A mixed integer optimization model is developed and was solved by a Hybrid Enhanced Artificial Bee Colony algorithm(HEABC).A case study was conducted to investigate the effects of different design parameters,including the total number of bus routes available,the maximum route duration within the study area and the maximum allowable number of bus routes that originated from each terminal.The model and results are useful for improving bus service policies.展开更多
Maximum Likelihood (ML) method has an excellent performance for Direction-Of-Arrival (DOA) estimation, but a mul- tidimensional nonlinear solution search is required which complicates the computation and prevents ...Maximum Likelihood (ML) method has an excellent performance for Direction-Of-Arrival (DOA) estimation, but a mul- tidimensional nonlinear solution search is required which complicates the computation and prevents the method from practical use. To reduce the high computational burden of ML method and make it more suitable to engineering applications, we apply the Artificial Bee Colony (ABC) algorithm to maximize the likelihood function for DOA estimation. As a recently proposed bio-inspired computing algorithm, ABC algorithm is originally used to optimize multivariable functions by imitating the be- havior of bee colony finding excellent nectar sources in the nature environment. It offers an excellent alternative to the con- ventional methods in ML-DOA estimation. The performance of ABC-based ML and other popular meta-heuristic-based ML methods for DOA estimation are compared for various scenarios of convergence, Signal-to-Noise Ratio (SNR), and number of iterations. The computation loads of ABC-based ML and the conventional ML methods for DOA estimation are also investi- gated. Simulation results demonstrate that the proposed ABC based method is more efficient in computation and statistical performance than other ML-based DOA estimation methods.展开更多
An improved artificial bee colony-random forest(IABC-RF)model is proposed for predicting the tunnel deformation due to the excavation of an adjacent foundation pit.A new search strategy of the artificial bee colony(AB...An improved artificial bee colony-random forest(IABC-RF)model is proposed for predicting the tunnel deformation due to the excavation of an adjacent foundation pit.A new search strategy of the artificial bee colony(ABC)algorithm is herein developed and incorporated,with the results showing that a much higher computational efficiency can be achieved with the new model,while high computational accuracy can also be maintained.The improved ABC algorithm is thereafter utilised and combined with the random forest(RF)model,where four important hyper-parameters are optimized,for a tunnel deformation prediction.Results are thoroughly compared with those of other prediction methods based on machine learning(ML),as well as the monitored data on the site.Via the comparisons,the validity and effectiveness of the proposed model are fully demonstrated,and a more promising perspective can be seen of the method for its potential wide applications in geotechnical engineering.展开更多
基金funded by the National Natural Science Foundation of China (42174011)。
文摘A novel artificial bee colony algorithm was introduced for the eruption event of the Sakurajima volcano on August 9,2020,to invert the magma source characteristics below the volcano based on the point source Mogi model.Considering that the Sakurajima volcano is surrounded by sea,all the deformation data are used to obtain the location and magma eruption volume of the volcano.In response to the weak local search capability of the artificial swarm algorithm,the difference between the global optimal individual and the un-roulette screened individual is introduced as the variance component in the onlooker stage.Detailed simulation experiments verify the improvement of the algorithm in terms of convergence speed.In real experiments,the Sakurajima volcano inversion shows closer fitting results and smaller residuals compared to the existing literature.Meanwhile,the convergence speed of the algorithm echoes with the simulation experiments.
基金jointly supported by the Jiangsu Postgraduate Research and Practice Innovation Project under Grant KYCX22_1030,SJCX22_0283 and SJCX23_0293the NUPTSF under Grant NY220201.
文摘Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental.
文摘Distribution generation(DG)technology based on a variety of renewable energy technologies has developed rapidly.A large number of multi-type DG are connected to the distribution network(DN),resulting in a decline in the stability of DN operation.It is urgent to find a method that can effectively connect multi-energy DG to DN.photovoltaic(PV),wind power generation(WPG),fuel cell(FC),and micro gas turbine(MGT)are considered in this paper.A multi-objective optimization model was established based on the life cycle cost(LCC)of DG,voltage quality,voltage fluctuation,system network loss,power deviation of the tie-line,DG pollution emission index,and meteorological index weight of DN.Multi-objective artificial bee colony algorithm(MOABC)was used to determine the optimal location and capacity of the four kinds of DG access DN,and compared with the other three heuristic algorithms.Simulation tests based on IEEE 33 test node and IEEE 69 test node show that in IEEE 33 test node,the total voltage deviation,voltage fluctuation,and system network loss of DN decreased by 49.67%,7.47%and 48.12%,respectively,compared with that without DG configuration.In the IEEE 69 test node,the total voltage deviation,voltage fluctuation and system network loss of DN in the MOABC configuration scheme decreased by 54.98%,35.93%and 75.17%,respectively,compared with that without DG configuration,indicating that MOABC can reasonably plan the capacity and location of DG.Achieve the maximum trade-off between DG economy and DN operation stability.
基金Supported by the National Natural Science Foundation of China (61174040, 61104178)the Fundamental Research Funds for the Central Universities
文摘A discrete artificial bee colony algorithm is proposed for solving the blocking flow shop scheduling problem with total flow time criterion. Firstly, the solution in the algorithm is represented as job permutation. Secondly, an initialization scheme based on a variant of the NEH (Nawaz-Enscore-Ham) heuristic and a local search is designed to construct the initial population with both quality and diversity. Thirdly, based on the idea of iterated greedy algorithm, some newly designed schemes for employed bee, onlooker bee and scout bee are presented. The performance of the proposed algorithm is tested on the well-known Taillard benchmark set, and the computational results demonstrate the effectiveness of the discrete artificial bee colony algorithm. In addition, the best known solutions of the benchmark set are provided for the blocking flow shop scheduling problem with total flow time criterion.
基金supported by National Natural Science Foundation of China (Grant Nos. 60973085, 61174187)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA044601)New Century Excellent Talents in University of China (Grant No. NCET-08-0232)
文摘Unlike a traditional flowshop problem where a job is assumed to be indivisible, in the lot-streaming flowshop problem, a job is allowed to overlap its operations between successive machines by splitting it into a number of smaller sub-lots and moving the completed portion of the sub-lots to downstream machine. In this way, the production is accelerated. This paper presents a discrete artificial bee colony (DABC) algorithm for a lot-streaming flowshop scheduling problem with total flowtime criterion. Unlike the basic ABC algorithm, the proposed DABC algorithm represents a solution as a discrete job permutation. An efficient initialization scheme based on the extended Nawaz-Enscore-Ham heuristic is utilized to produce an initial population with a certain level of quality and diversity. Employed and onlooker bees generate new solutions in their neighborhood, whereas scout bees generate new solutions by performing insert operator and swap operator to the best solution found so far. Moreover, a simple but effective local search is embedded in the algorithm to enhance local exploitation capability. A comparative experiment is carried out with the existing discrete particle swarm optimization, hybrid genetic algorithm, threshold accepting, simulated annealing and ant colony optimization algorithms based on a total of 160 randomly generated instances. The experimental results show that the proposed DABC algorithm is quite effective for the lot-streaming flowshop with total flowtime criterion in terms of searching quality, robustness and effectiveness. This research provides the references to the optimization research on lot-streaming flowshop.
基金supported by the National Natural Science Foundation of China(No.42174011 and No.41874001).
文摘To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model),we use an improved artificial bee colony algorithm without derivative and the bootstrap method to estimate the parameters and evaluate the accuracy of MAM error model.The improved artificial bee colony algorithm can update individuals in multiple dimensions and improve the cooperation ability between individuals by constructing a new search equation based on the idea of quasi-affine transformation.The experimental results show that based on the weighted least squares criterion,the algorithm can get the results consistent with the weighted least squares method without multiple formula derivation.The parameter estimation and accuracy evaluation method based on the bootstrap method can get better parameter estimation and more reasonable accuracy information than existing methods,which provides a new idea for the theory of parameter estimation and accuracy evaluation of the MAM error model.
基金supported by the National Natural Science Foundation of China (60803074)the Fundamental Research Funds for the Central Universities (DUT10JR06)
文摘The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs well in most cases, however, there still exists an insufficiency in the ABC algorithm that ignores the fitness of related pairs of individuals in the mechanism of find- ing a neighboring food source. This paper presents an improved ABC algorithm with mutual learning (MutualABC) that adjusts the produced candidate food source with the higher fitness between two individuals selected by a mutual learning factor. The perfor- mance of the improved MutualABC algorithm is tested on a set of benchmark functions and compared with the basic ABC algo- rithm and some classical versions of improved ABC algorithms. The experimental results show that the MutualABC algorithm with appropriate parameters outperforms other ABC algorithms in most experiments.
基金supported by the National Natural Science Foundation of China(61201370)the Special Funding Project for Independent Innovation Achievement Transform of Shandong Province(2012CX30202)the Natural Science Foundation of Shandong Province(ZR2014FM039)
文摘The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in- sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA called Archimedean copula estima- tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench- mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen- tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.
基金Projects(61174040,61104178,61374136) supported by the National Natural Science Foundation of ChinaProject(12JC1403400) supported by Shanghai Commission of Science and Technology,ChinaProject supported by the Fundamental Research Funds for the Central Universities,China
文摘An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effective combination of the insertion and swap operator is applied to producing neighborhood individual at the employed bee phase. The tournament selection is adopted to avoid falling into local optima, while, the optimized insert operator embeds in onlooker bee phase for further searching the neighborhood solution to enhance the local search ability of algorithm. The tournament selection with size 2 is again applied and a better selected solution will be performed destruction and construction of iterated greedy(IG) algorithm, and then the result replaces the worse one. Simulation results show that our algorithm has a better performance compared with the HDDE and CHS which were proposed recently. It provides the better known solutions for the makespan criterion to flow shop scheduling problem with limited buffers for the Car benchmark by Carlier and Rec benchmark by Reeves. The convergence curves show that the algorithm not only has faster convergence speed but also has better convergence value.
基金National Nature Science Foundation of China,Grant/Award Number:U1813201the Key Scientific Research Projects of Henan Province,Grant/Award Number:22A413011+2 种基金the Training Program for Young Teachers in Universities of Henan Province,Grant/Award Number:2020GGJS137Henan Province Science and Technology R&D projects,Grant/Award Number:202102210135,212102310547 and 212102210080High‐end foreign expert program of Ministry of Science and Technology,Grant/Award Number:G2021026006L。
文摘The operating state of bearing affects the performance of rotating machinery;thus,how to accurately extract features from the original vibration signals and recognise the faulty parts as early as possible is very critical.In this study,the one‐dimensional ternary model which has been proved to be an effective statistical method in feature selection is introduced and shapelet transformation is proposed to calculate the parameter of one‐dimensional ternary model that is usually selected by trial and error.Then XGBoost is used to recognise the faults from the obtained features,and artificial bee colony algorithm(ABC)is introduced to optimise the parameters of XGBoost.Moreover,for improving the performance of intelligent algorithm,an improved strategy where the evolution is guided by the probability that the optimal solution appears in certain solution space is proposed.The experimental results based on the failure vibration signal samples show that the average accuracy of fault signal recognition can reach 97%,which is much higher than the ones corresponding to traditional extraction strategies.And with the help of improved ABC algorithm,the performance of XGBoost classifier could be optimised;the accuracy could be improved from 97.02%to 98.60%compared with the traditional classification strategy.
基金Sponsored by the Qing Lan Project of Jiangsu Province
文摘In the paper, a new selection probability inspired by artificial bee colony algorithm is introduced into standard particle swarm optimization by improving the global extremum updating condition to enhance the capability of its overall situation search. The experiment result shows that the new scheme is more valuable and effective than other schemes in the convergence of codebook design and the performance of codebook, and it can avoid the premature phenomenon of the particles.
基金National Key R&D Program of China(Grant No.2019YFB1704600)National Natural Science Foundation of China(Grant Nos.51825502,51775216)Program for HUST Academic Frontier Youth Team of China(Grant No.2017QYTD04).
文摘With the continuous development of science and technology,electronic devices have begun to enter all aspects of human life,becoming increasingly closely related to human life.Users have higher quality requirements for electronic devices.Electronic device testing has gradually become an irreplaceable engineering process in modern manufacturing enterprises to guarantee the quality of products while preventing inferior products from entering the market.Considering the large output of electronic devices,improving the testing efficiency while reducing the testing cost has become an urgent problem to be solved.This study investigates the electronic device testing machine allocation problem(EDTMAP),aiming to improve the production of electronic devices and reduce the scheduling distance among testing machines through reasonable machine allocation.First,a mathematical model was formulated for the EDTMAP to maximize both production and the scheduling distance among testing machines.Second,we developed a discrete multi-objective artificial bee colony(DMOABC)algorithm to solve EDTMAP.A crossover operator and local search operator were designed to improve the exploration and exploitation of the algorithm,respectively.Numerical experiments were conducted to evaluate the performance of the proposed algorithm.The experimental results demonstrate the superiority of the proposed algorithm compared with the non-dominated sorting genetic algorithm II(NSGA-II)and strength Pareto evolutionary algorithm 2(SPEA2).Finally,the mathematical model and DMOABC algorithm were applied to a real-world factory that tests radio-frequency modules.The results verify that our method can significantly improve production and reduce the scheduling distance among testing machines.
基金supported by the Fundamental Research Funds for the Central Universities(NS2016027)
文摘For a class of aeroengine nonlinear systems,a novel nonlinear sliding mode controller(SMC)design method based on artificial bee colony(ABC)algorithm is proposed.In view of the strong nonlinearity and uncertainty of aeroengines,sliding mode control strategy is adopted to design controller for the aeroengine.On basis of exact linearization approach,the nonlinear sliding mode controller is obtained conveniently.By using ABC algorithm,the parameters in the designed controller can be tuned to achieve optimal performance,resulting in a closedloop system with satisfactory dynamic performance and high steady accuracy.Simulation on an aeroengine verifies the effectiveness of the presented method.
基金Supported by the CRSRI Open Research Program(CKWV2013225/KY)the Priority Academic Program Development of Jiangsu Higher Education Institution+2 种基金the Open Project Foundation of Key Laboratory of the Yellow River Sediment of Ministry of Water Resource(2014006)the State Key Lab of Urban Water Resource and Environment(HIT)(ES201409)the Open Project Program of State Key Laboratory of Food Science and Technology,Jiangnan University(SKLF-KF-201310)
文摘Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class uniformity of gray level,a method of reciprocal gray entropy threshold selection is proposed based on two-dimensional(2-D)histogram region oblique division and artificial bee colony(ABC)optimization.Firstly,the definition of reciprocal gray entropy is introduced.Then on the basis of one-dimensional(1-D)method,2-D threshold selection criterion function based on reciprocal gray entropy with histogram oblique division is derived.To accelerate the progress of searching the optimal threshold,the recently proposed ABC optimization algorithm is adopted.The proposed method not only avoids the undefined value points in Shannon entropy,but also achieves high accuracy and anti-noise performance due to reasonable 2-D histogram region division and the consideration of within-class uniformity of gray level.A large number of experimental results show that,compared with the maximum Shannon entropy method with 2-D histogram oblique division and the reciprocal entropy method with 2-D histogram oblique division based on niche chaotic mutation particle swarm optimization(NCPSO),the proposed method can achieve better segmentation results and can satisfy the requirement of real-time processing.
基金supported by the National Natural Science Foundation of China(6060309260975042)
文摘Being as unique nonlinear components of block ciphers,substitution boxes(S-boxes) directly affect the security of the cryptographic systems.It is important and difficult to design cryptographically strong S-boxes that simultaneously meet with multiple cryptographic criteria such as bijection,non-linearity,strict avalanche criterion(SAC),bits independence criterion(BIC),differential probability(DP) and linear probability(LP).To deal with this problem,a chaotic S-box based on the artificial bee colony algorithm(CSABC) is designed.It uses the S-boxes generated by the six-dimensional compound hyperchaotic map as the initial individuals and employs ABC to improve their performance.In addition,it considers the nonlinearity and differential uniformity as the fitness functions.A series of experiments have been conducted to compare multiple cryptographic criteria of this algorithm with other algorithms.Simulation results show that the new algorithm has cryptographically strong S-box while meeting multiple cryptographic criteria.
基金supported by a grant from the Project "Multifunctional mobile phone R & D and industrialization of the Internet of things" supported by the Project of the Provincial Department of research (2011A090200008)partly supported by National Science and Technology Major Project (No. 2010ZX07102-006)+3 种基金the National Basic Research Program of China (973 Program) (No. 2011CB505402)the Major Program of the National Natural Science Foundation of China (No. 61170117)the National Natural Science Foundation of China (No.61432004)the National Key Research and Development Program (No.2016YFB1001404)
文摘Internet of things(IoT) imposes new challenges on service composition as it is difficult to manage a quick instantiation of a complex services from a growing number of dynamic candidate services. A cross-modified Artificial Bee Colony Algorithm(CMABC) is proposed to achieve the optimal solution services in an acceptable time and high accuracy. Firstly, web service instantiation model was established. What is more, to overcome the problem of discrete and chaotic solution space, the global optimal solution was used to accelerate convergence rate by imitating the cross operation of Genetic algorithm(GA). The simulation experiment result shows that CMABC exhibited faster convergence speed and better convergence accuracy than some other intelligent optimization algorithms.
文摘In order to solve the problems of multi-parameter,multi-extreme and multi-solution in the nonlinear iterative optimization process of Rayleigh wave inversion,the artificial bee colony(ABC)algorithm is selected for global nonlinear inversion.The global nonlinear inversion method does not rely on a strict initial model and does not need to calculate the derivative of the objective function.The ABC algorithm uses the local optimization behavior of each individual artificial bee to finally highlight the global optimal value in the colony,and the convergence speed is faster.While searching for the global optimal solution,an effective local search can also be performed to ensure the reliability of the inversion results.This paper uses the ABC algorithm to perform Rayleigh wave dispersion inversion on the actual seismic data to obtain a clear undergrounding of shear wave velocity profile and accurately identify the location of the high-velocity interlayer.It is verified that the ABC algorithm used in the inversion of the Rayleigh wave dispersion curve is stable and converges quickly.
基金supported by a grant from the Central Policy Unit of the Government of the Hong Kong Special Administrative Region and the Research Grants Council of the Hong Kong Special Administrative Region,China(HKU7026-PPR-12)a grant(201011159026)from the University Research Committee,a grant from the National Natural Science Foundation of China(71271183)a Research Postgraduate Studentship from the University of Hong Kong.
文摘A bus network design problem in a suburban area of Hong Kong is studied.The objective is to minimize the weighted sum of the number of transfers and the total travel time of passengers by restructuring bus routes and determining new frequencies.A mixed integer optimization model is developed and was solved by a Hybrid Enhanced Artificial Bee Colony algorithm(HEABC).A case study was conducted to investigate the effects of different design parameters,including the total number of bus routes available,the maximum route duration within the study area and the maximum allowable number of bus routes that originated from each terminal.The model and results are useful for improving bus service policies.
文摘Maximum Likelihood (ML) method has an excellent performance for Direction-Of-Arrival (DOA) estimation, but a mul- tidimensional nonlinear solution search is required which complicates the computation and prevents the method from practical use. To reduce the high computational burden of ML method and make it more suitable to engineering applications, we apply the Artificial Bee Colony (ABC) algorithm to maximize the likelihood function for DOA estimation. As a recently proposed bio-inspired computing algorithm, ABC algorithm is originally used to optimize multivariable functions by imitating the be- havior of bee colony finding excellent nectar sources in the nature environment. It offers an excellent alternative to the con- ventional methods in ML-DOA estimation. The performance of ABC-based ML and other popular meta-heuristic-based ML methods for DOA estimation are compared for various scenarios of convergence, Signal-to-Noise Ratio (SNR), and number of iterations. The computation loads of ABC-based ML and the conventional ML methods for DOA estimation are also investi- gated. Simulation results demonstrate that the proposed ABC based method is more efficient in computation and statistical performance than other ML-based DOA estimation methods.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.52178386,51808193,and 51979270).
文摘An improved artificial bee colony-random forest(IABC-RF)model is proposed for predicting the tunnel deformation due to the excavation of an adjacent foundation pit.A new search strategy of the artificial bee colony(ABC)algorithm is herein developed and incorporated,with the results showing that a much higher computational efficiency can be achieved with the new model,while high computational accuracy can also be maintained.The improved ABC algorithm is thereafter utilised and combined with the random forest(RF)model,where four important hyper-parameters are optimized,for a tunnel deformation prediction.Results are thoroughly compared with those of other prediction methods based on machine learning(ML),as well as the monitored data on the site.Via the comparisons,the validity and effectiveness of the proposed model are fully demonstrated,and a more promising perspective can be seen of the method for its potential wide applications in geotechnical engineering.