Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the patte...Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the pattern recognition and decision making process difficult.Since OM find useful in business sectors to improve the quality of the product as well as services,machine learning(ML)and deep learning(DL)models can be considered into account.Besides,the hyperparameters involved in the DL models necessitate proper adjustment process to boost the classification process.Therefore,in this paper,a new Artificial Fish Swarm Optimization with Bidirectional Long Short Term Memory(AFSO-BLSTM)model has been developed for OM process.The major intention of the AFSO-BLSTM model is to effectively mine the opinions present in the textual data.In addition,the AFSO-BLSTM model undergoes pre-processing and TF-IFD based feature extraction process.Besides,BLSTM model is employed for the effectual detection and classification of opinions.Finally,the AFSO algorithm is utilized for effective hyperparameter adjustment process of the BLSTM model,shows the novelty of the work.A complete simulation study of the AFSO-BLSTM model is validated using benchmark dataset and the obtained experimental values revealed the high potential of the AFSO-BLSTM model on mining opinions.展开更多
We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,th...We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,the rigid-flexible multi-body system of the UWG was simplified as a rigid system composed of“thruster+float body”,based on which a planar motion model of the UWG was established.Second,we obtained the model parameters using an empirical method combined with parameter identification,which means that some parameters were estimated by the empirical method.In view of the specificity and importance of the heading control,heading model parameters were identified through the artificial fish swarm algorithm based on tank test data,so that we could take full advantage of the limited trial data to factually describe the dynamic characteristics of the system.Based on the established heading motion model,parameters of the heading S-surface controller were optimized using the artificial fish swarm algorithm.Heading motion comparison and maritime control experiments of the“Ocean Rambler”UWG were completed.Tank test results show high precision of heading motion prediction including heading angle and yawing angular velocity.The UWG shows good control performance in tank tests and sea trials.The efficiency of the proposed method is verified.展开更多
The main objective of the present study is the development of a new algorithm that can adapt to complex and changeable environments.An artificial fish swarm algorithm is developed which relies on a wireless sensor net...The main objective of the present study is the development of a new algorithm that can adapt to complex and changeable environments.An artificial fish swarm algorithm is developed which relies on a wireless sensor network(WSN)in a hydrodynamic background.The nodes of this algorithm are viscous fluids and artificial fish,while related‘events’are directly connected to the food available in the related virtual environment.The results show that the total processing time of the data by the source node is 6.661 ms,of which the processing time of crosstalk data is 3.789 ms,accounting for 56.89%.The total processing time of the data by the relay node is 15.492 ms,of which the system scheduling and the Carrier Sense Multiple Access(CSMA)rollback time of the forwarding is 8.922 ms,accounting for 57.59%.The total time for the data processing of the receiving node is 11.835 ms,of which the processing time of crosstalk data is 3.791 ms,accounting for 32.02%;the serial data processing time is 4.542 ms,accounting for 38.36%.Crosstalk packets occupy a certain amount of system overhead in the internal communication of nodes,which is one of the causes of node-level congestion.We show that optimizing the crosstalk phenomenon can alleviate the internal congestion of nodes to some extent.展开更多
In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, ...In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem.展开更多
Scalable video coding(SVC) is a powerful tool to solve the network heterogeneity and terminal diversity in video applications. However, in related works about the optimization of SVC-based video streaming over Softwar...Scalable video coding(SVC) is a powerful tool to solve the network heterogeneity and terminal diversity in video applications. However, in related works about the optimization of SVC-based video streaming over Software Defined Network(SDN), most of the them are focused either on the number of transmission layers or on the optimization of transmission path for specific layer. In this paper, we propose a noval optimization algorithm for SVC to dynamically adjust the number of layers and optimize the transmission paths simultaneously. We establish the problem model based on the 0/1 knapsack model, and then solve it with Artificial Fish Swarm Algorithm. Additionally, the simulations are carried out on the Mininet platform, which show that our approach can dynamically adjust the number of layers and select the optimal paths at the same time. As a result, it can achieve an effective allocation of network resources which mitigates the congestion and reduces the loss of non-SVC stream.展开更多
Purpose-Conventional diagnostic techniques,on the other hand,may be prone to subjectivity since they depend on assessment of motions that are often subtle to individual eyes and hence hard to classify,potentially resu...Purpose-Conventional diagnostic techniques,on the other hand,may be prone to subjectivity since they depend on assessment of motions that are often subtle to individual eyes and hence hard to classify,potentially resulting in misdiagnosis.Meanwhile,early nonmotor signs of Parkinson’s disease(PD)can be mild and may be due to variety of other conditions.As a result,these signs are usually ignored,making early PD diagnosis difficult.Machine learning approaches for PD classification and healthy controls or individuals with similar medical symptoms have been introduced to solve these problems and to enhance the diagnostic and assessment processes of PD(like,movement disorders or other Parkinsonian syndromes).Design/methodology/approach-Medical observations and evaluation of medical symptoms,including characterization of a wide range of motor indications,are commonly used to diagnose PD.The quantity of the data being processed has grown in the last five years;feature selection has become a prerequisite before any classification.This study introduces a feature selection method based on the score-based artificial fish swarm algorithm(SAFSA)to overcome this issue.Findings-This study adds to the accuracy of PD identification by reducing the amount of chosen vocal features while to use the most recent and largest publicly accessible database.Feature subset selection in PD detection techniques starts by eliminating features that are not relevant or redundant.According to a few objective functions,features subset chosen should provide the best performance.Research limitations/implications-In many situations,this is an Nondeterministic Polynomial Time(NPHard)issue.This method enhances the PD detection rate by selecting the most essential features from the database.To begin,the data set’s dimensionality is reduced using Singular Value Decomposition dimensionality technique.Next,Biogeography-Based Optimization(BBO)for feature selection;the weight value is a vital parameter for finding the best features in PD classification.Originality/value-PD classification is done by using ensemble learning classification approaches such as hybrid classifier of fuzzy K-nearest neighbor,kernel support vector machines,fuzzy convolutional neural network and random forest.The suggested classifiers are trained using data from UCIMLrepository,and their results are verified using leave-one-person-out cross validation.The measures employed to assess the classifier efficiency include accuracy,F-measure,Matthews correlation coefficient.展开更多
A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear cont...A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear continuous switch function.The proposed new friction model solves the implementation problems with the traditional LuGre model at high speeds.An improved artificial fish swarm algorithm(IAFSA)method which combines the chaotic search and Gauss mutation operator into traditional artificial fish swarm algorithm is used to identify the parameters in the proposed modified LuGre friction model.The steady state response experiments and dynamic friction experiments are implemented to validate the effectiveness of IAFSA algorithm.The comparisons between the measured dynamic friction forces and the ones simulated with the established mathematic friction model at different frequencies and magnitudes demonstrate that the proposed modified LuGre friction model can give accurate simulation about the dynamic friction characteristics existing in the electromagnetic valve actuator system.The presented modelling and parameter identification methods are applicable for many other high-speed mechanical systems with friction.展开更多
In order to meet the polishing requirement of faucets and other products,a novel multi-station rotary polishing robot is designed,which is a PPPR + RR type of degree of freedom( DOF) distribution structure,and is simi...In order to meet the polishing requirement of faucets and other products,a novel multi-station rotary polishing robot is designed,which is a PPPR + RR type of degree of freedom( DOF) distribution structure,and is similar to dual-arm robot. Forward and inverse kinematic analysis is carried out by robot modeling. In order to make this robot structure more compact,first of all,X,Y and Z three moving degrees of freedom( DOF) limit stroke polishing need is calculated by using an artificial fish swarm algorithm,which analyzes dexterous workspace of this robot. Then,on the basis of the above analysis,the three DOF stroke is optimized. Simulation and polishing experimental results verify that this polishing robot with optimized stroke parameters can meet the polishing needs of faucets and other bathroom pieces.展开更多
Traffic flow prediction becomes an essential process for intelligent transportation systems(ITS).Though traffic sensor devices are manually controllable,traffic flow data with distinct length,uneven sampling,and missi...Traffic flow prediction becomes an essential process for intelligent transportation systems(ITS).Though traffic sensor devices are manually controllable,traffic flow data with distinct length,uneven sampling,and missing data finds challenging for effective exploitation.The traffic data has been considerably increased in recent times which cannot be handled by traditional mathematical models.The recent developments of statistic and deep learning(DL)models pave a way for the effectual design of traffic flow prediction(TFP)models.In this view,this study designs optimal attentionbased deep learning with statistical analysis for TFP(OADLSA-TFP)model.The presentedOADLSA-TFP model intends to effectually forecast the level of traffic in the environment.To attain this,the OADLSA-TFP model employs attention-based bidirectional long short-term memory(ABLSTM)model for predicting traffic flow.In order to enhance the performance of the ABLSTM model,the hyperparameter optimization process is performed using artificial fish swarm algorithm(AFSA).A wide-ranging experimental analysis is carried out on benchmark dataset and the obtained values reported the enhancements of the OADLSA-TFP model over the recent approaches mean square error(MSE),root mean square error(RMSE),and mean absolute percentage error(MAPE)of 120.342%,10.970%,and 8.146%respectively.展开更多
Particles,including soot,aerosol and ash,usually exist as fractal aggregates.The radiative properties of the particle fractal aggregates have a great influence on studying the light or heat radiative transfer in the p...Particles,including soot,aerosol and ash,usually exist as fractal aggregates.The radiative properties of the particle fractal aggregates have a great influence on studying the light or heat radiative transfer in the particle medium.In the present work,the performance of the single-layer inversion model and the double-layer inversion model in reconstructing the geometric structure of particle fractal aggregates is studied based on the light reflectancetransmittance measurement method.An improved artificial fish-swarm algorithm(IAFSA)is proposed to solve the inverse problem.The result reveals that the accuracy of double-layer inversion model is more satisfactory as it can provide more uncorrelated information than the single-layer inversion model.Moreover,the developed IAFSA show higher accuracy and better robustness than the original artificial fish swarm algorithm(AFSA)for avoiding local optimization problems effectively.As a whole,the present work supplies a useful kind of measurement technology for predicting geometrical morphology of particle fractal aggregates.展开更多
Aiming at the design problem of aviation swarm combat course of action(COA),considering the influence of stochastic parameters in the causal relationship model and optimization problem model,according to the dynamic i...Aiming at the design problem of aviation swarm combat course of action(COA),considering the influence of stochastic parameters in the causal relationship model and optimization problem model,according to the dynamic influence net(DIN)theory,stochastic simulation technique,feedforward neural network(FNN)function approximation technique and multi-objective artificial fish school algorithm(MOAFSA),this paper proposed a COA optimized method based on DIN and multi-objective stochastic chance constraint optimization for aviation swarm combat.First,on the basis of establishing the overall framework of the model and defining the elements of causal relationship modeling,the static and dynamic causal relationship modeling and optimization problem modeling were carried out respectively.Second,the probability propagation mechanism of DIN was established,which mainly included two aspects,i.e.,the overall process and the specific algorithm.Then,input and output data were generated based on stochastic simulation.According to these data,FNN was adopted for function approximation,and MOAFSA was adopted for iterative optimization.Finally,the rationality of the model,and the effectiveness and superiority of the algorithm were verified through multiple sets of simulation cases.展开更多
In recent years,with the support of national policies,Cross Border E-Commerce(CBEC)has developed rapidly.This business model not only brings significant benefits to the national economy,but also has many unique challe...In recent years,with the support of national policies,Cross Border E-Commerce(CBEC)has developed rapidly.This business model not only brings significant benefits to the national economy,but also has many unique challenges,especially at the level of supply chain management.Therefore,to enable CBEC enterprises to develop sustainable supply chain,this study discusses the performance evaluation model of supply chain and proposes a CBEC Supply Chain Performance Evaluation Model(CBECSC-EM)based on the Levenberg–Marquardt Backpropagation(LMBP)algorithm.This experiment constructs performance evaluation indicators for the supply chain of CBEC enterprises.On this basis,the LMBP algorithm is introduced,and improved in the experiment to make the overall performance of the evaluation model more scientific and reasonable.In the verification set,the maximum F1 values of LMBP,DEA,SBM,and BP are 98.46%,93.78%,87.29%,and 78.95%,respectively.The MAPE value of LMBP model is 0.102%,which is lower than the other three methods(0.282%,0.343%,and 0.385%)selected in the experiment.The maximum standard deviation rates of importance and operability of the evaluation indexes are 0.1346 and 0.1405,respectively,and there is a significant consistency between the expert scores.Therefore,the LMBP algorithm has broad application prospects in supply chain performance evaluation of CBEC enterprises.展开更多
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/142/43).
文摘Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the pattern recognition and decision making process difficult.Since OM find useful in business sectors to improve the quality of the product as well as services,machine learning(ML)and deep learning(DL)models can be considered into account.Besides,the hyperparameters involved in the DL models necessitate proper adjustment process to boost the classification process.Therefore,in this paper,a new Artificial Fish Swarm Optimization with Bidirectional Long Short Term Memory(AFSO-BLSTM)model has been developed for OM process.The major intention of the AFSO-BLSTM model is to effectively mine the opinions present in the textual data.In addition,the AFSO-BLSTM model undergoes pre-processing and TF-IFD based feature extraction process.Besides,BLSTM model is employed for the effectual detection and classification of opinions.Finally,the AFSO algorithm is utilized for effective hyperparameter adjustment process of the BLSTM model,shows the novelty of the work.A complete simulation study of the AFSO-BLSTM model is validated using benchmark dataset and the obtained experimental values revealed the high potential of the AFSO-BLSTM model on mining opinions.
基金Project(51779052)supported by the National Natural Science Foundation of ChinaProject(QC2016062)supported by the Natural Science Foundation of Heilongjiang Province,China+2 种基金Project(614221503091701)supported by the Research Fund from Science and Technology on Underwater Vehicle Laboratory,ChinaProject(LBH-Q17046)supported by the Heilongjiang Postdoctoral Funds for Scientific Research Initiation,ChinaProject(HEUCFP201741)supported by the Fundamental Research Funds for the Central Universities,China
文摘We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,the rigid-flexible multi-body system of the UWG was simplified as a rigid system composed of“thruster+float body”,based on which a planar motion model of the UWG was established.Second,we obtained the model parameters using an empirical method combined with parameter identification,which means that some parameters were estimated by the empirical method.In view of the specificity and importance of the heading control,heading model parameters were identified through the artificial fish swarm algorithm based on tank test data,so that we could take full advantage of the limited trial data to factually describe the dynamic characteristics of the system.Based on the established heading motion model,parameters of the heading S-surface controller were optimized using the artificial fish swarm algorithm.Heading motion comparison and maritime control experiments of the“Ocean Rambler”UWG were completed.Tank test results show high precision of heading motion prediction including heading angle and yawing angular velocity.The UWG shows good control performance in tank tests and sea trials.The efficiency of the proposed method is verified.
基金financially supported by Natural Science Foundation of Heilongjiang Province of China[Grant No.LH2019F042].
文摘The main objective of the present study is the development of a new algorithm that can adapt to complex and changeable environments.An artificial fish swarm algorithm is developed which relies on a wireless sensor network(WSN)in a hydrodynamic background.The nodes of this algorithm are viscous fluids and artificial fish,while related‘events’are directly connected to the food available in the related virtual environment.The results show that the total processing time of the data by the source node is 6.661 ms,of which the processing time of crosstalk data is 3.789 ms,accounting for 56.89%.The total processing time of the data by the relay node is 15.492 ms,of which the system scheduling and the Carrier Sense Multiple Access(CSMA)rollback time of the forwarding is 8.922 ms,accounting for 57.59%.The total time for the data processing of the receiving node is 11.835 ms,of which the processing time of crosstalk data is 3.791 ms,accounting for 32.02%;the serial data processing time is 4.542 ms,accounting for 38.36%.Crosstalk packets occupy a certain amount of system overhead in the internal communication of nodes,which is one of the causes of node-level congestion.We show that optimizing the crosstalk phenomenon can alleviate the internal congestion of nodes to some extent.
基金supported by the National Natural Science Foundation of China(61472441)
文摘In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem.
文摘Scalable video coding(SVC) is a powerful tool to solve the network heterogeneity and terminal diversity in video applications. However, in related works about the optimization of SVC-based video streaming over Software Defined Network(SDN), most of the them are focused either on the number of transmission layers or on the optimization of transmission path for specific layer. In this paper, we propose a noval optimization algorithm for SVC to dynamically adjust the number of layers and optimize the transmission paths simultaneously. We establish the problem model based on the 0/1 knapsack model, and then solve it with Artificial Fish Swarm Algorithm. Additionally, the simulations are carried out on the Mininet platform, which show that our approach can dynamically adjust the number of layers and select the optimal paths at the same time. As a result, it can achieve an effective allocation of network resources which mitigates the congestion and reduces the loss of non-SVC stream.
文摘Purpose-Conventional diagnostic techniques,on the other hand,may be prone to subjectivity since they depend on assessment of motions that are often subtle to individual eyes and hence hard to classify,potentially resulting in misdiagnosis.Meanwhile,early nonmotor signs of Parkinson’s disease(PD)can be mild and may be due to variety of other conditions.As a result,these signs are usually ignored,making early PD diagnosis difficult.Machine learning approaches for PD classification and healthy controls or individuals with similar medical symptoms have been introduced to solve these problems and to enhance the diagnostic and assessment processes of PD(like,movement disorders or other Parkinsonian syndromes).Design/methodology/approach-Medical observations and evaluation of medical symptoms,including characterization of a wide range of motor indications,are commonly used to diagnose PD.The quantity of the data being processed has grown in the last five years;feature selection has become a prerequisite before any classification.This study introduces a feature selection method based on the score-based artificial fish swarm algorithm(SAFSA)to overcome this issue.Findings-This study adds to the accuracy of PD identification by reducing the amount of chosen vocal features while to use the most recent and largest publicly accessible database.Feature subset selection in PD detection techniques starts by eliminating features that are not relevant or redundant.According to a few objective functions,features subset chosen should provide the best performance.Research limitations/implications-In many situations,this is an Nondeterministic Polynomial Time(NPHard)issue.This method enhances the PD detection rate by selecting the most essential features from the database.To begin,the data set’s dimensionality is reduced using Singular Value Decomposition dimensionality technique.Next,Biogeography-Based Optimization(BBO)for feature selection;the weight value is a vital parameter for finding the best features in PD classification.Originality/value-PD classification is done by using ensemble learning classification approaches such as hybrid classifier of fuzzy K-nearest neighbor,kernel support vector machines,fuzzy convolutional neural network and random forest.The suggested classifiers are trained using data from UCIMLrepository,and their results are verified using leave-one-person-out cross validation.The measures employed to assess the classifier efficiency include accuracy,F-measure,Matthews correlation coefficient.
基金Project(2015BAG06B00)supported by the National Key Technology Research from Development Program of the Ministry of Science and Technology of China
文摘A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear continuous switch function.The proposed new friction model solves the implementation problems with the traditional LuGre model at high speeds.An improved artificial fish swarm algorithm(IAFSA)method which combines the chaotic search and Gauss mutation operator into traditional artificial fish swarm algorithm is used to identify the parameters in the proposed modified LuGre friction model.The steady state response experiments and dynamic friction experiments are implemented to validate the effectiveness of IAFSA algorithm.The comparisons between the measured dynamic friction forces and the ones simulated with the established mathematic friction model at different frequencies and magnitudes demonstrate that the proposed modified LuGre friction model can give accurate simulation about the dynamic friction characteristics existing in the electromagnetic valve actuator system.The presented modelling and parameter identification methods are applicable for many other high-speed mechanical systems with friction.
基金Supported by the Key Research and Development Project of Yangzhou--Industry Preview and Key Projects(No.YZ2015011)
文摘In order to meet the polishing requirement of faucets and other products,a novel multi-station rotary polishing robot is designed,which is a PPPR + RR type of degree of freedom( DOF) distribution structure,and is similar to dual-arm robot. Forward and inverse kinematic analysis is carried out by robot modeling. In order to make this robot structure more compact,first of all,X,Y and Z three moving degrees of freedom( DOF) limit stroke polishing need is calculated by using an artificial fish swarm algorithm,which analyzes dexterous workspace of this robot. Then,on the basis of the above analysis,the three DOF stroke is optimized. Simulation and polishing experimental results verify that this polishing robot with optimized stroke parameters can meet the polishing needs of faucets and other bathroom pieces.
基金This project was funded by the Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia,under grant no.(G:665-980-1441).
文摘Traffic flow prediction becomes an essential process for intelligent transportation systems(ITS).Though traffic sensor devices are manually controllable,traffic flow data with distinct length,uneven sampling,and missing data finds challenging for effective exploitation.The traffic data has been considerably increased in recent times which cannot be handled by traditional mathematical models.The recent developments of statistic and deep learning(DL)models pave a way for the effectual design of traffic flow prediction(TFP)models.In this view,this study designs optimal attentionbased deep learning with statistical analysis for TFP(OADLSA-TFP)model.The presentedOADLSA-TFP model intends to effectually forecast the level of traffic in the environment.To attain this,the OADLSA-TFP model employs attention-based bidirectional long short-term memory(ABLSTM)model for predicting traffic flow.In order to enhance the performance of the ABLSTM model,the hyperparameter optimization process is performed using artificial fish swarm algorithm(AFSA).A wide-ranging experimental analysis is carried out on benchmark dataset and the obtained values reported the enhancements of the OADLSA-TFP model over the recent approaches mean square error(MSE),root mean square error(RMSE),and mean absolute percentage error(MAPE)of 120.342%,10.970%,and 8.146%respectively.
基金supported by the National Natural Science Foundation of China(No.51806103)the Natural Science Foundation of Jiangsu Province(No.BK20170800)Aeronautical Science Foundation of China(No.201928052002)。
文摘Particles,including soot,aerosol and ash,usually exist as fractal aggregates.The radiative properties of the particle fractal aggregates have a great influence on studying the light or heat radiative transfer in the particle medium.In the present work,the performance of the single-layer inversion model and the double-layer inversion model in reconstructing the geometric structure of particle fractal aggregates is studied based on the light reflectancetransmittance measurement method.An improved artificial fish-swarm algorithm(IAFSA)is proposed to solve the inverse problem.The result reveals that the accuracy of double-layer inversion model is more satisfactory as it can provide more uncorrelated information than the single-layer inversion model.Moreover,the developed IAFSA show higher accuracy and better robustness than the original artificial fish swarm algorithm(AFSA)for avoiding local optimization problems effectively.As a whole,the present work supplies a useful kind of measurement technology for predicting geometrical morphology of particle fractal aggregates.
基金co-supported by Natural Science Foundation of Shaanxi(2023-JC-QN-0728)Postdoctoral Science Foundation of China(2021M693942)。
文摘Aiming at the design problem of aviation swarm combat course of action(COA),considering the influence of stochastic parameters in the causal relationship model and optimization problem model,according to the dynamic influence net(DIN)theory,stochastic simulation technique,feedforward neural network(FNN)function approximation technique and multi-objective artificial fish school algorithm(MOAFSA),this paper proposed a COA optimized method based on DIN and multi-objective stochastic chance constraint optimization for aviation swarm combat.First,on the basis of establishing the overall framework of the model and defining the elements of causal relationship modeling,the static and dynamic causal relationship modeling and optimization problem modeling were carried out respectively.Second,the probability propagation mechanism of DIN was established,which mainly included two aspects,i.e.,the overall process and the specific algorithm.Then,input and output data were generated based on stochastic simulation.According to these data,FNN was adopted for function approximation,and MOAFSA was adopted for iterative optimization.Finally,the rationality of the model,and the effectiveness and superiority of the algorithm were verified through multiple sets of simulation cases.
文摘In recent years,with the support of national policies,Cross Border E-Commerce(CBEC)has developed rapidly.This business model not only brings significant benefits to the national economy,but also has many unique challenges,especially at the level of supply chain management.Therefore,to enable CBEC enterprises to develop sustainable supply chain,this study discusses the performance evaluation model of supply chain and proposes a CBEC Supply Chain Performance Evaluation Model(CBECSC-EM)based on the Levenberg–Marquardt Backpropagation(LMBP)algorithm.This experiment constructs performance evaluation indicators for the supply chain of CBEC enterprises.On this basis,the LMBP algorithm is introduced,and improved in the experiment to make the overall performance of the evaluation model more scientific and reasonable.In the verification set,the maximum F1 values of LMBP,DEA,SBM,and BP are 98.46%,93.78%,87.29%,and 78.95%,respectively.The MAPE value of LMBP model is 0.102%,which is lower than the other three methods(0.282%,0.343%,and 0.385%)selected in the experiment.The maximum standard deviation rates of importance and operability of the evaluation indexes are 0.1346 and 0.1405,respectively,and there is a significant consistency between the expert scores.Therefore,the LMBP algorithm has broad application prospects in supply chain performance evaluation of CBEC enterprises.