Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artifici...Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem.展开更多
Water is a vital resource.It supports a multitude of industries,civilizations,and agriculture.However,climatic conditions impact water availability,particularly in desert areas where the temperature is high,and rain i...Water is a vital resource.It supports a multitude of industries,civilizations,and agriculture.However,climatic conditions impact water availability,particularly in desert areas where the temperature is high,and rain is scarce.Therefore,it is crucial to forecast water demand to provide it to sectors either on regular or emergency days.The study aims to develop an accurate model to forecast daily water demand under the impact of climatic conditions.This forecasting is known as a multivariate time series because it uses both the historical data of water demand and climatic conditions to forecast the future.Focusing on the collected data of Jeddah city,Saudi Arabia in the period between 2004 and 2018,we develop a hybrid approach that uses Artificial Neural Networks(ANN)for forecasting and Particle Swarm Optimization algorithm(PSO)for tuning ANNs’hyperparameters.Based on the Root Mean Square Error(RMSE)metric,results show that the(PSO-ANN)is an accurate model for multivariate time series forecasting.Also,the first day is the most difficult day for prediction(highest error rate),while the second day is the easiest to predict(lowest error rate).Finally,correlation analysis shows that the dew point is the most climatic factor affecting water demand.展开更多
文摘Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem.
文摘Water is a vital resource.It supports a multitude of industries,civilizations,and agriculture.However,climatic conditions impact water availability,particularly in desert areas where the temperature is high,and rain is scarce.Therefore,it is crucial to forecast water demand to provide it to sectors either on regular or emergency days.The study aims to develop an accurate model to forecast daily water demand under the impact of climatic conditions.This forecasting is known as a multivariate time series because it uses both the historical data of water demand and climatic conditions to forecast the future.Focusing on the collected data of Jeddah city,Saudi Arabia in the period between 2004 and 2018,we develop a hybrid approach that uses Artificial Neural Networks(ANN)for forecasting and Particle Swarm Optimization algorithm(PSO)for tuning ANNs’hyperparameters.Based on the Root Mean Square Error(RMSE)metric,results show that the(PSO-ANN)is an accurate model for multivariate time series forecasting.Also,the first day is the most difficult day for prediction(highest error rate),while the second day is the easiest to predict(lowest error rate).Finally,correlation analysis shows that the dew point is the most climatic factor affecting water demand.