The implementation of artificial intelligence(AI)in a smart society,in which the analysis of human habits is mandatory,requires automated data scheduling and analysis using smart applications,a smart infrastructure,sm...The implementation of artificial intelligence(AI)in a smart society,in which the analysis of human habits is mandatory,requires automated data scheduling and analysis using smart applications,a smart infrastructure,smart systems,and a smart network.In this context,which is characterized by a large gap between training and operative processes,a dedicated method is required to manage and extract the massive amount of data and the related information mining.The method presented in this work aims to reduce this gap with near-zero-failure advanced diagnostics(AD)for smart management,which is exploitable in any context of Society 5.0,thus reducing the risk factors at all management levels and ensuring quality and sustainability.We have also developed innovative applications for a humancentered management system to support scheduling in the maintenance of operative processes,for reducing training costs,for improving production yield,and for creating a human–machine cyberspace for smart infrastructure design.The results obtained in 12 international companies demonstrate a possible global standardization of operative processes,leading to the design of a near-zero-failure intelligent system that is able to learn and upgrade itself.Our new method provides guidance for selecting the new generation of intelligent manufacturing and smart systems in order to optimize human–machine interactions,with the related smart maintenance and education.展开更多
Different artificial intelligence(AI)methods have been applied to various aspects of rock mechanics,but the fact that none of these methods have been used as a standard implies that doubt as to their generality and va...Different artificial intelligence(AI)methods have been applied to various aspects of rock mechanics,but the fact that none of these methods have been used as a standard implies that doubt as to their generality and validity still exists.For this,a literature review of application of AI to the field of rock mechanics is presented.Comprehensive studies of the researches published in the top journals relative to the fields of rock mechanics,computer applications in engineering,and the textbooks were conducted.The performances of the AI methods that have been used in rock mechanics applications were evaluated.The literature review shows that AI methods have successfully been used to solve various problems in the rock mechanics field and they performed better than the traditional empirical,mathematical or statistical methods.However,their practical applicability is still an issue of concern as many of the existing AI models require some level of expertise before they can be used,because they are not in the form of tractable mathematical equations.Thus some advanced AI methods are still yet to be explored.The limited availability of dataset for the AI simulations is also identified as a major problem.The solutions to the identified problems and the possible future research focus were proposed in the study subsequently.展开更多
In this article I will address the issue of the meaning of Embodied Artificial Intelligence(EAI)as it is configured today.My starting point is the refined interactive perspective on the semantics of EAI,as was recentl...In this article I will address the issue of the meaning of Embodied Artificial Intelligence(EAI)as it is configured today.My starting point is the refined interactive perspective on the semantics of EAI,as was recently suggested by Froese and colleagues.This perspective rests on the assumption that the concept of human bodily subjectivity must be extended to include meaning-making processes,which are enabled by advanced AI systems that may be incorporated in the human biological body.After having clarified the technical background,I will introduce the genetic component of the phenomenological method as a suitable tool to face the aforementioned issue.Towards this end,I will place the genetic method in the context of the so-called New Human-Machine Interaction(New HMI).I will further outline a genetic phenomenology of visual embodiment,suggesting a futuristic application based on the thesis of the“technological supplementation of phenomenological methodology”through the synthetic method.The case at stake is that of patients with a severe clinical picture characterised by the loss of corneal function,who in the near future could be treated with synthetic corneal prosthetic implants produced by a 3D bio-printing process by using an advanced EAI technique.I will conclude this article with a brief review of the main problems that still remain open.展开更多
Gastric cancer(GC), the fifth most common cancer globally, remains the leading cause of cancer deaths worldwide. Inflammation-induced tumorigenesis is the predominant process in GC development;therefore, systematic re...Gastric cancer(GC), the fifth most common cancer globally, remains the leading cause of cancer deaths worldwide. Inflammation-induced tumorigenesis is the predominant process in GC development;therefore, systematic research in this area should improve understanding of the biological mechanisms that initiate GC development and promote cancer hallmarks. Here, we summarize biological knowledge regarding gastric inflammation-induced tumorigenesis, and characterize the multi-omics data and systems biology methods for investigating GC development. Of note, we highlight pioneering studies in multi-omics data and state-of-the-art network-based algorithms used for dissecting the features of gastric inflammation-induced tumorigenesis, and we propose translational applications in early GC warning biomarkers and precise treatment strategies. This review offers integrative insights for GC research, with the goal of paving the way to novel paradigms for GC precision oncology and prevention.展开更多
In recent years,the application of smartphone in various fields has received great attention,and it has become a promising tool in virus detection,data processing and data exchange.During the rapid spread of COVID-19 ...In recent years,the application of smartphone in various fields has received great attention,and it has become a promising tool in virus detection,data processing and data exchange.During the rapid spread of COVID-19 around the world,many traditional detection methods have been combined with smartphone to assist in the analysis and detection of the novel coronavirus(SARS-CoV-2),including electrochemistry,fluorescence and colorimetry.With the gradual development of artificial intelligence(AI),the combination of AI and smartphone to analyze SARS-CoV-2 was also the focus of research.Based on the summary of the traditional methods combined with smartphone to detect SARS-CoV-2 virus,in addition to AI-based data processing,AI algorithms are also employed for SARS-CoV-2 detection itself.This review discussed both strategies and focused on the application of the former.The combination of AI algorithm and smartphone to detect SARS-CoV-2 has high accuracy,which is more conducive to meeting the needs of portable detection.In addition,the classification of SARS-CoV-2 virus samples in biological fluids such as blood and saliva was also discussed.Finally,this paper briefly discussed the limitations of using smartphone analysis to detect SARS-CoV-2,as well as the prospect and future development of virus detection.In conclusion,the detection methods based on smartphone and AI algorithms show great potential in the detection of SARS-CoV-2 and can be a valuable complement to traditional analysis methods.展开更多
Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recogn...Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recognition System(TSRS)is one of themost important components ofADAS.Among the challengeswith TSRS is being able to recognize road signs with the highest accuracy and the shortest processing time.Accordingly,this paper introduces a new real time methodology recognizing Speed Limit Signs based on a trio of developed modules.Firstly,the Speed Limit Detection(SLD)module uses the Haar Cascade technique to generate a new SL detector in order to localize SL signs within captured frames.Secondly,the Speed Limit Classification(SLC)module,featuring machine learning classifiers alongside a newly developed model called DeepSL,harnesses the power of a CNN architecture to extract intricate features from speed limit sign images,ensuring efficient and precise recognition.In addition,a new Speed Limit Classifiers Fusion(SLCF)module has been developed by combining trained ML classifiers and the DeepSL model by using the Dempster-Shafer theory of belief functions and ensemble learning’s voting technique.Through rigorous software and hardware validation processes,the proposedmethodology has achieved highly significant F1 scores of 99.98%and 99.96%for DS theory and the votingmethod,respectively.Furthermore,a prototype encompassing all components demonstrates outstanding reliability and efficacy,with processing times of 150 ms for the Raspberry Pi board and 81.5 ms for the Nano Jetson board,marking a significant advancement in TSRS technology.展开更多
The recalcitrance of pathogens to traditional antibiotics has made treating and eradicating bacterial infections more difficult.In this regard,developing new antimicrobial agents to combat antibiotic-resistant strains...The recalcitrance of pathogens to traditional antibiotics has made treating and eradicating bacterial infections more difficult.In this regard,developing new antimicrobial agents to combat antibiotic-resistant strains has become a top priority.Antimicrobial peptides(AMPs),a ubiquitous class of naturally occurring compounds with broadspectrum antipathogenic activity,hold significant promise as an effective solution to the current antimicrobial resistance(AMR)crisis.Several AMPs have been identified and evaluated for their therapeutic application,with many already in the drug development pipeline.Their distinct properties,such as high target specificity,potency,and ability to bypass microbial resistance mechanisms,make AMPs a promising alternative to traditional antibiotics.Nonetheless,several challenges,such as high toxicity,lability to proteolytic degradation,low stability,poor pharmacokinetics,and high production costs,continue to hamper their clinical applicability.Therefore,recent research has focused on optimizing the properties of AMPs to improve their performance.By understanding the physicochemical properties of AMPs that correspond to their activity,such as amphipathicity,hydrophobicity,structural conformation,amino acid distribution,and composition,researchers can design AMPs with desired and improved performance.In this review,we highlight some of the key strategies used to optimize the performance of AMPs,including rational design and de novo synthesis.We also discuss the growing role of predictive computational tools,utilizing artificial intelligence and machine learning,in the design and synthesis of highly efficacious lead drug candidates.展开更多
This research extensively evaluates three leading mathematical software packages: Python, MATLAB, and Scilab, in the context of solving nonlinear systems of equations with five unknown variables. The study’s core obj...This research extensively evaluates three leading mathematical software packages: Python, MATLAB, and Scilab, in the context of solving nonlinear systems of equations with five unknown variables. The study’s core objectives include comparing software performance using standardized benchmarks, employing key performance metrics for quantitative assessment, and examining the influence of varying hardware specifications on software efficiency across HP ProBook, HP EliteBook, Dell Inspiron, and Dell Latitude laptops. Results from this investigation reveal insights into the capabilities of these software tools in diverse computing environments. On the HP ProBook, Python consistently outperforms MATLAB in terms of computational time. Python also exhibits a lower robustness index for problems 3 and 5 but matches or surpasses MATLAB for problem 1, for some initial guess values. In contrast, on the HP EliteBook, MATLAB consistently exhibits shorter computational times than Python across all benchmark problems. However, Python maintains a lower robustness index for most problems, except for problem 3, where MATLAB performs better. A notable challenge is Python’s failure to converge for problem 4 with certain initial guess values, while MATLAB succeeds in producing results. Analysis on the Dell Inspiron reveals a split in strengths. Python demonstrates superior computational efficiency for some problems, while MATLAB excels in handling others. This pattern extends to the robustness index, with Python showing lower values for some problems, and MATLAB achieving the lowest indices for other problems. In conclusion, this research offers valuable insights into the comparative performance of Python, MATLAB, and Scilab in solving nonlinear systems of equations. It underscores the importance of considering both software and hardware specifications in real-world applications. The choice between Python and MATLAB can yield distinct advantages depending on the specific problem and computational environment, providing guidance for researchers and practitioners in selecting tools for their unique challenges.展开更多
文摘The implementation of artificial intelligence(AI)in a smart society,in which the analysis of human habits is mandatory,requires automated data scheduling and analysis using smart applications,a smart infrastructure,smart systems,and a smart network.In this context,which is characterized by a large gap between training and operative processes,a dedicated method is required to manage and extract the massive amount of data and the related information mining.The method presented in this work aims to reduce this gap with near-zero-failure advanced diagnostics(AD)for smart management,which is exploitable in any context of Society 5.0,thus reducing the risk factors at all management levels and ensuring quality and sustainability.We have also developed innovative applications for a humancentered management system to support scheduling in the maintenance of operative processes,for reducing training costs,for improving production yield,and for creating a human–machine cyberspace for smart infrastructure design.The results obtained in 12 international companies demonstrate a possible global standardization of operative processes,leading to the design of a near-zero-failure intelligent system that is able to learn and upgrade itself.Our new method provides guidance for selecting the new generation of intelligent manufacturing and smart systems in order to optimize human–machine interactions,with the related smart maintenance and education.
基金This work was supported by Korea Research Fellowship Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT(Grant No.2019H1D3A1A01102993).
文摘Different artificial intelligence(AI)methods have been applied to various aspects of rock mechanics,but the fact that none of these methods have been used as a standard implies that doubt as to their generality and validity still exists.For this,a literature review of application of AI to the field of rock mechanics is presented.Comprehensive studies of the researches published in the top journals relative to the fields of rock mechanics,computer applications in engineering,and the textbooks were conducted.The performances of the AI methods that have been used in rock mechanics applications were evaluated.The literature review shows that AI methods have successfully been used to solve various problems in the rock mechanics field and they performed better than the traditional empirical,mathematical or statistical methods.However,their practical applicability is still an issue of concern as many of the existing AI models require some level of expertise before they can be used,because they are not in the form of tractable mathematical equations.Thus some advanced AI methods are still yet to be explored.The limited availability of dataset for the AI simulations is also identified as a major problem.The solutions to the identified problems and the possible future research focus were proposed in the study subsequently.
文摘In this article I will address the issue of the meaning of Embodied Artificial Intelligence(EAI)as it is configured today.My starting point is the refined interactive perspective on the semantics of EAI,as was recently suggested by Froese and colleagues.This perspective rests on the assumption that the concept of human bodily subjectivity must be extended to include meaning-making processes,which are enabled by advanced AI systems that may be incorporated in the human biological body.After having clarified the technical background,I will introduce the genetic component of the phenomenological method as a suitable tool to face the aforementioned issue.Towards this end,I will place the genetic method in the context of the so-called New Human-Machine Interaction(New HMI).I will further outline a genetic phenomenology of visual embodiment,suggesting a futuristic application based on the thesis of the“technological supplementation of phenomenological methodology”through the synthetic method.The case at stake is that of patients with a severe clinical picture characterised by the loss of corneal function,who in the near future could be treated with synthetic corneal prosthetic implants produced by a 3D bio-printing process by using an advanced EAI technique.I will conclude this article with a brief review of the main problems that still remain open.
基金supported by funds from the National Natural Science Foundation of China (Grant No. T2341008)。
文摘Gastric cancer(GC), the fifth most common cancer globally, remains the leading cause of cancer deaths worldwide. Inflammation-induced tumorigenesis is the predominant process in GC development;therefore, systematic research in this area should improve understanding of the biological mechanisms that initiate GC development and promote cancer hallmarks. Here, we summarize biological knowledge regarding gastric inflammation-induced tumorigenesis, and characterize the multi-omics data and systems biology methods for investigating GC development. Of note, we highlight pioneering studies in multi-omics data and state-of-the-art network-based algorithms used for dissecting the features of gastric inflammation-induced tumorigenesis, and we propose translational applications in early GC warning biomarkers and precise treatment strategies. This review offers integrative insights for GC research, with the goal of paving the way to novel paradigms for GC precision oncology and prevention.
基金the financial support from the National Natural Science Foundation of China(Nos.21605105,22204064 and 22276080)the Natural Science Foundation of Jiangsu Province,China(Nos.BK20211340 and BK20220645)。
文摘In recent years,the application of smartphone in various fields has received great attention,and it has become a promising tool in virus detection,data processing and data exchange.During the rapid spread of COVID-19 around the world,many traditional detection methods have been combined with smartphone to assist in the analysis and detection of the novel coronavirus(SARS-CoV-2),including electrochemistry,fluorescence and colorimetry.With the gradual development of artificial intelligence(AI),the combination of AI and smartphone to analyze SARS-CoV-2 was also the focus of research.Based on the summary of the traditional methods combined with smartphone to detect SARS-CoV-2 virus,in addition to AI-based data processing,AI algorithms are also employed for SARS-CoV-2 detection itself.This review discussed both strategies and focused on the application of the former.The combination of AI algorithm and smartphone to detect SARS-CoV-2 has high accuracy,which is more conducive to meeting the needs of portable detection.In addition,the classification of SARS-CoV-2 virus samples in biological fluids such as blood and saliva was also discussed.Finally,this paper briefly discussed the limitations of using smartphone analysis to detect SARS-CoV-2,as well as the prospect and future development of virus detection.In conclusion,the detection methods based on smartphone and AI algorithms show great potential in the detection of SARS-CoV-2 and can be a valuable complement to traditional analysis methods.
文摘Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recognition System(TSRS)is one of themost important components ofADAS.Among the challengeswith TSRS is being able to recognize road signs with the highest accuracy and the shortest processing time.Accordingly,this paper introduces a new real time methodology recognizing Speed Limit Signs based on a trio of developed modules.Firstly,the Speed Limit Detection(SLD)module uses the Haar Cascade technique to generate a new SL detector in order to localize SL signs within captured frames.Secondly,the Speed Limit Classification(SLC)module,featuring machine learning classifiers alongside a newly developed model called DeepSL,harnesses the power of a CNN architecture to extract intricate features from speed limit sign images,ensuring efficient and precise recognition.In addition,a new Speed Limit Classifiers Fusion(SLCF)module has been developed by combining trained ML classifiers and the DeepSL model by using the Dempster-Shafer theory of belief functions and ensemble learning’s voting technique.Through rigorous software and hardware validation processes,the proposedmethodology has achieved highly significant F1 scores of 99.98%and 99.96%for DS theory and the votingmethod,respectively.Furthermore,a prototype encompassing all components demonstrates outstanding reliability and efficacy,with processing times of 150 ms for the Raspberry Pi board and 81.5 ms for the Nano Jetson board,marking a significant advancement in TSRS technology.
基金This work was supported by the National Natural Science Foundation of China(31930015,32200397)Ministry of Science and Technology of China(2018YFA0801403)+3 种基金Chinese Academy of Sciences(XDB31000000,KFJ-BRP-008-003)Yunnan Province Grant(202003AD150008,202002AA100007)Kunming Science and Technology Bureau(2023SCP001)New Cornerstone Investigator Program。
文摘The recalcitrance of pathogens to traditional antibiotics has made treating and eradicating bacterial infections more difficult.In this regard,developing new antimicrobial agents to combat antibiotic-resistant strains has become a top priority.Antimicrobial peptides(AMPs),a ubiquitous class of naturally occurring compounds with broadspectrum antipathogenic activity,hold significant promise as an effective solution to the current antimicrobial resistance(AMR)crisis.Several AMPs have been identified and evaluated for their therapeutic application,with many already in the drug development pipeline.Their distinct properties,such as high target specificity,potency,and ability to bypass microbial resistance mechanisms,make AMPs a promising alternative to traditional antibiotics.Nonetheless,several challenges,such as high toxicity,lability to proteolytic degradation,low stability,poor pharmacokinetics,and high production costs,continue to hamper their clinical applicability.Therefore,recent research has focused on optimizing the properties of AMPs to improve their performance.By understanding the physicochemical properties of AMPs that correspond to their activity,such as amphipathicity,hydrophobicity,structural conformation,amino acid distribution,and composition,researchers can design AMPs with desired and improved performance.In this review,we highlight some of the key strategies used to optimize the performance of AMPs,including rational design and de novo synthesis.We also discuss the growing role of predictive computational tools,utilizing artificial intelligence and machine learning,in the design and synthesis of highly efficacious lead drug candidates.
文摘This research extensively evaluates three leading mathematical software packages: Python, MATLAB, and Scilab, in the context of solving nonlinear systems of equations with five unknown variables. The study’s core objectives include comparing software performance using standardized benchmarks, employing key performance metrics for quantitative assessment, and examining the influence of varying hardware specifications on software efficiency across HP ProBook, HP EliteBook, Dell Inspiron, and Dell Latitude laptops. Results from this investigation reveal insights into the capabilities of these software tools in diverse computing environments. On the HP ProBook, Python consistently outperforms MATLAB in terms of computational time. Python also exhibits a lower robustness index for problems 3 and 5 but matches or surpasses MATLAB for problem 1, for some initial guess values. In contrast, on the HP EliteBook, MATLAB consistently exhibits shorter computational times than Python across all benchmark problems. However, Python maintains a lower robustness index for most problems, except for problem 3, where MATLAB performs better. A notable challenge is Python’s failure to converge for problem 4 with certain initial guess values, while MATLAB succeeds in producing results. Analysis on the Dell Inspiron reveals a split in strengths. Python demonstrates superior computational efficiency for some problems, while MATLAB excels in handling others. This pattern extends to the robustness index, with Python showing lower values for some problems, and MATLAB achieving the lowest indices for other problems. In conclusion, this research offers valuable insights into the comparative performance of Python, MATLAB, and Scilab in solving nonlinear systems of equations. It underscores the importance of considering both software and hardware specifications in real-world applications. The choice between Python and MATLAB can yield distinct advantages depending on the specific problem and computational environment, providing guidance for researchers and practitioners in selecting tools for their unique challenges.