期刊文献+
共找到469篇文章
< 1 2 24 >
每页显示 20 50 100
Morphological Engineering of Sensing Materials for Flexible Pressure Sensors and Artificial Intelligence Applications 被引量:18
1
作者 Zhengya Shi Lingxian Meng +6 位作者 Xinlei Shi Hongpeng Li Juzhong Zhang Qingqing Sun Xuying Liu Jinzhou Chen Shuiren Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第9期1-48,共48页
As an indispensable branch of wearable electronics,flexible pressure sensors are gaining tremendous attention due to their extensive applications in health monitoring,human-machine interaction,artificial intelligence,... As an indispensable branch of wearable electronics,flexible pressure sensors are gaining tremendous attention due to their extensive applications in health monitoring,human-machine interaction,artificial intelligence,the internet of things,and other fields.In recent years,highly flexible and wearable pressure sensors have been developed using various materials/structures and transduction mechanisms.Morphological engineering of sensing materials at the nanometer and micrometer scales is crucial to obtaining superior sensor performance.This review focuses on the rapid development of morphological engineering technologies for flexible pressure sensors.We discuss different architectures and morphological designs of sensing materials to achieve high performance,including high sensitivity,broad working range,stable sensing,low hysteresis,high transparency,and directional or selective sensing.Additionally,the general fabrication techniques are summarized,including self-assembly,patterning,and auxiliary synthesis methods.Furthermore,we present the emerging applications of high-performing microengineered pressure sensors in healthcare,smart homes,digital sports,security monitoring,and machine learning-enabled computational sensing platform.Finally,the potential challenges and prospects for the future developments of pressure sensors are discussed comprehensively. 展开更多
关键词 Flexible pressure sensor Morphological engineering sensing performance Manufacturing technique artificial intelligence
下载PDF
Detection of the Pine Wilt Disease Tree Candidates for Drone Remote Sensing Using Artificial Intelligence Techniques 被引量:11
2
作者 Mutiara Syifa Sung-Jae Park Chang-Wook Lee 《Engineering》 SCIE EI 2020年第8期919-926,共8页
Pine wilt disease(PWD)has recently caused substantial pine tree losses in Republic of Korea.PWD is considered a severe problem due to the importance of pine trees to Korean people,so this problem must be handled appro... Pine wilt disease(PWD)has recently caused substantial pine tree losses in Republic of Korea.PWD is considered a severe problem due to the importance of pine trees to Korean people,so this problem must be handled appropriately.Previously,we examined the history of PWD and found that it had already spread to some regions of Republic of Korea;these became our study area.Early detection of PWD is required.We used drone remote sensing techniques to detect trees with similar symptoms to trees infected with PWD.Drone remote sensing was employed because it yields high-quality images and can easily reach the locations of pine trees.To differentiate healthy pine trees from those with PWD,we produced a land cover(LC)map from drone images collected from the villages of Anbi and Wonchang by classifying them using two classifier methods,i.e.,artificial neural network(ANN)and support vector machine(SVM).Furthermore,compared the accuracy of two types of Global Positioning System(GPS)data,collected using drone and hand-held devices,for identifying the locations of trees with PWD.We then divided the drone images into six LC classes for each study area and found that the SVM was more accurate than the ANN at classifying trees with PWD.In Anbi,the SVM had an overall accuracy of 94.13%,which is 6.7%higher than the overall accuracy of the ANN,which was 87.43%.We obtained similar results in Wonchang,for which the accuracy of the SVM and ANN was 86.59%and 79.33%,respectively.In terms of the GPS data,we used two type of hand-held GPS device.GPS device 1 is corrected by referring to the benchmarks sited on both locations,while the GPS device 2 is uncorrected device which used the default setting of the GPS only.The data collected from hand-held GPS device 1 was better than those collected using hand-held GPS device 2 in Wonchang.However,in Anbi,we obtained better results from GPS device 2 than from GPS device 1.In Anbi,the error in the data from GPS device 1 was 7.08 m,while that of the GPS device 2 data was 0.14 m.In conclusion,both classifiers can distinguish between healthy trees and those with PWD based on LC data.LC data can also be used for other types of classification.There were some differences between the hand-held and drone GPS datasets from both areas. 展开更多
关键词 Pine wilt disease Drone remote sensing artificial neural network Support vector machine Global positioning system
下载PDF
Mapping of hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur District of Tamil Nadu, India 被引量:2
3
作者 A Muthamilselvan N Rajasekaran R Suresh 《Journal of Groundwater Science and Engineering》 2019年第3期264-281,共18页
Mapping of hard rock aquifer system and artificial recharge zonation were carried out in an area of 325 km^2 in parts of the Perambalur District,Tamil Nadu,India.This district has been declared as one of the over-expl... Mapping of hard rock aquifer system and artificial recharge zonation were carried out in an area of 325 km^2 in parts of the Perambalur District,Tamil Nadu,India.This district has been declared as one of the over-exploited regions in Tamil Nadu by the Central Groundwater Board.To raise the groundwater level,suitable recharge zones were identified and artificial recharge structures are suggested using geomatics technology in the present study.To this end,various thematic maps concerning lithology,soil,geomorphology,land use,land cover,slope,lineament,lineament density,drainage,drainage density and groundwater depth level were prepared.Fissile hornblende gneiss(244 km^2)covered most of the study area followed by charnockites(68 km^2).Structural hills and rocky pediments characterize the major geomorphological features in the targeted area,and are followed by deep moderated pediments.The area is mostly used as crop and fallow land,followed by scrub land and deciduous forest.In the study area,the slopes are predominantly very gentle(142 km^2)and nearly level(66 km^2)ones.Besides,Groundwater level data of 58 wells have been generated,in which the minimum and maximum depth were 3 and 28 m respectively.Integration under the GIS environment has been carried out using all the thematic layers to identify the groundwater prospect zone through the introduction of weight and rank methods.Integrated output performances were classified into very poor,poor,moderate,good and excellent categories.All these classes were further divided into two groups as suitable and non-suitable area for the selection of recharge sites.Hard rock fractures were mapped as lineaments from satellite images,and besides that,rose diagram was also generated to find out the trend of the fracture.Furthermore,fracture data of 146 numbers have been collected using Brunton compass to generate rose diagram and were correlated with the rose diagram derived from lineaments.The present study significantly brought up a few areas such as Ammapalayam,Melapuliyur,Senjeri and around Siruvachur for artificial recharge. 展开更多
关键词 HARD rock AQUIFER artificial RECHARGE Remote sensing and GIS GROUNDWATER level
下载PDF
Determination of future land use changes using remote sensing imagery and artificial neural network algorithm:A case study of Davao City,Philippines
4
作者 Cristina E.Dumdumaya Jonathan Salar Cabrera 《Artificial Intelligence in Geosciences》 2023年第1期111-118,共8页
Land use and land cover(LULC)changes refer to alterations in land use or physical characteristics.These changes can be caused by human activities,such as urbanization,agriculture,and resource extraction,as well as nat... Land use and land cover(LULC)changes refer to alterations in land use or physical characteristics.These changes can be caused by human activities,such as urbanization,agriculture,and resource extraction,as well as natural phenomena,for example,erosion and climate change.LULC changes significantly impact ecosystem services,biodiversity,and human welfare.In this study,LULC changes in Davao City,Philippines,were simulated,predicted,and projected using a multilayer perception artificial neural network(MLP-ANN)model.The MLP-ANN model was employed to analyze the impact of elevation and proximity to road networks(i.e.,exploratory maps)on changes in LULC from 2017 to 2021.The predicted 2021 LULC map shows a high correlation to the actual LULC map of 2021,with a kappa index of 0.91 and a 96.68%accuracy.The MLP-ANN model was applied to project LULC changes in the future(i.e.,2030 and 2050).The results suggest that in 2030,the built-up area and trees are increasing by 4.50%and 2.31%,respectively.Unfortunately,water will decrease by up to 0.34%,and crops is about to decrease by approximately 3.25%.In the year 2050,the built-up area will continue to increase to 6.89%,while water and crops will decrease by 0.53%and 3.32%,respectively.Overall,the results show that anthropogenic activities influence the land’s alterations.Moreover,the study illustrates how machine learning models can generate a reliable future scenario of land usage changes. 展开更多
关键词 LULC artificial neural network Remote sensing Land use land cover prediction Multilayer perception Philippines
下载PDF
Artificial senses for characterization of food quality 被引量:1
5
作者 R.E. Lacey 《Journal of Bionic Engineering》 SCIE EI CSCD 2004年第3期159-173,共15页
Food quality is of primary concern in the food industry and to the consumer. Systems that mimic human senses have been developed and applied to the characterization of food quality. The five primary senses are: visio... Food quality is of primary concern in the food industry and to the consumer. Systems that mimic human senses have been developed and applied to the characterization of food quality. The five primary senses are: vision, hearing, smell, taste and touch. In the characterization of food quality, people assess the samples sensorially and differentiate “good”from “bad”on a continuum. However, the human sensory system is subjective, with mental and physical inconsistencies, and needs time to work. Artificial senses such as machine vision, the electronic ear, electronic nose, electronic tongue, artificial mouth and even artificial the head have been developed that mimic the human senses. These artificial senses are coordinated individually or collectively by a pat- tern recognition technique, typically artificial neural networks, which have been developed based on studies of the mechanism of the human brain. Such a structure has been used to formulate methods for rapid characterization of food quality. This research presents and discusses individual artificial sensing systems. With the concept of multi-sensor data fusion these sensor systems can work collectively in some way. Two such fused systems, artificial mouth and artificial head, are described and discussed. It indicates that each of the individual systems has their own artificially sensing ability to differentiate food samples. It further indicates that with a more complete mimic of human intelligence the fused systems are more powerful than the individual sys- tems in differentiation of food samples. 展开更多
关键词 food quality artificial senses quality quantification artificial neural networks feature extraction multi-sensor data fusion
下载PDF
Machine learning empowered COVID-19 patient monitoring using non-contact sensing:An extensive review 被引量:2
6
作者 Umer Saeed Syed Yaseen Shah +3 位作者 Jawad Ahmad Muhammad Ali Imran Qammer H.Abbasi Syed Aziz Shah 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2022年第2期193-204,共12页
The severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),which caused the coronavirus disease 2019(COVID-19)pandemic,has affected more than 400 million people worldwide.With the recent rise of new Delta and Omi... The severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),which caused the coronavirus disease 2019(COVID-19)pandemic,has affected more than 400 million people worldwide.With the recent rise of new Delta and Omicron variants,the efficacy of the vaccines has become an important question.The goal of various studies has been to limit the spread of the virus by utilizing wireless sensing technologies to prevent human-to-human interactions,particularly for healthcare workers.In this paper,we discuss the current literature on invasive/contact and non-invasive/noncontact technologies(including Wi-Fi,radar,and software-defined radio)that have been effectively used to detect,diagnose,and monitor human activities and COVID-19 related symptoms,such as irregular respiration.In addition,we focused on cutting-edge machine learning algorithms(such as generative adversarial networks,random forest,multilayer perceptron,support vector machine,extremely randomized trees,and k-nearest neighbors)and their essential role in intelligent healthcare systems.Furthermore,this study highlights the limitations related to non-invasive techniques and prospective research directions. 展开更多
关键词 artificial intelligence Non-invasive healthcare Machine learning Non-contact sensing COVID-19
下载PDF
Land-Cover Classification and its Impact on Peshawar’s Land Surface Temperature Using Remote Sensing 被引量:4
7
作者 Shahab Ul Islam Saifullah Jan +3 位作者 Abdul Waheed Gulzar Mehmood Mahdi Zareei Faisal Alanazi 《Computers, Materials & Continua》 SCIE EI 2022年第2期4123-4145,共23页
Spatial and temporal informationon urban infrastructure is essential and requires various land-cover/land-use planning and management applications.Besides,a change in infrastructure has a direct impact on other land-c... Spatial and temporal informationon urban infrastructure is essential and requires various land-cover/land-use planning and management applications.Besides,a change in infrastructure has a direct impact on other land-cover and climatic conditions.This study assessed changes in the rate and spatial distribution of Peshawar district’s infrastructure and its effects on Land Surface Temperature(LST)during the years 1996 and 2019.For this purpose,firstly,satellite images of bands7 and 8 ETM+(Enhanced Thematic Mapper)plus and OLI(Operational Land Imager)of 30 m resolution were taken.Secondly,for classification and image processing,remote sensing(RS)applications ENVI(Environment for Visualising Images)and GIS(Geographic Information System)were used.Thirdly,for better visualization and more in-depth analysis of land sat images,pre-processing techniques were employed.For Land use and Land cover(LU/LC)four types of land cover areas were identified-vegetation area,water cover,urbanized area,and infertile land for the years under research.The composition of red,green,and near infra-red bands was used for supervised classification.Classified images were extracted for analyzing the relative infrastructure change.A comparative analysis for the classification of images is performed for SVM(Support Vector Machine)and ANN(Artificial Neural Network).Based on analyzing these images,the result shows the rise in the average temperature from 30.04℃ to 45.25℃.This only possible reason is the increase in the built-up area from 78.73 to 332.78 Area km^(2) from 1996 to 2019.It has also been witnessed that the city’s sides are hotter than the city’s center due to the barren land on the borders. 展开更多
关键词 Remote sensing temperature extraction URBANIZATION satellite image classification artificial neural network support vector machine LU/LC land surface temperature
下载PDF
Estimation of vegetation biophysical parameters by remote sensing using radial basis function neural network 被引量:2
8
作者 YANG Xiao-hua HUANG Jing-feng +2 位作者 WANG Jian-wen WANG Xiu-zhen LIU Zhan-yu 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第6期883-895,共13页
Hyperspectral reflectance (350~2500 nm) data were recorded at two different sites of rice in two experiment fields including two cultivars, and three levels of nitrogen (N) application. Twenty-five Vegetation Indices ... Hyperspectral reflectance (350~2500 nm) data were recorded at two different sites of rice in two experiment fields including two cultivars, and three levels of nitrogen (N) application. Twenty-five Vegetation Indices (VIs) were used to predict the rice agronomic parameters including Leaf Area Index (LAI, m2 green leaf/m2 soil) and Green Leaf Chlorophyll Density (GLCD, mg chlorophyll/m2 soil) by the traditional regression models and Radial Basis Function Neural Network (RBF). RBF emerged as a variant of Artificial Neural Networks (ANNs) in the late 1980’s. A large variety of training algorithms has been tested for training RBF networks. In this study, Original RBF (ORBF), Gradient Descent RBF (GDRBF), and Generalized Regression Neural Network (GRNN) were employed. Results showed that green waveband Normalized Difference Vegetation Index (NDVIgreen) and TCARI/OSAVI have the best prediction power for LAI by exponent model and ORBF respectively, and that TCARI/OSAVI has the best prediction power for GLCD by exponent model and GDRBF. The best performances of RBF are compared with the traditional models, showing that the relationship between VIs and agronomic variables are further improved when RBF is used. Compared with the best traditional models, ORBF using TCARI/OSAVI improves the prediction power for LAI by lowering the Root Mean Square Error (RMSE) for 0.1119, and GDRBF using TCARI/OSAVI improves the prediction power for GLCD by lowering the RMSE for 26.7853. It is concluded that RBF provides a useful exploratory and predictive tool when applied to the sensitive VIs. 展开更多
关键词 artificial neural network (ANN) Radial basis function (RBF) Remote sensing RICE Vegetation index (VI)
下载PDF
Feasibility study on sinkhole monitoring with fiber optic strain sensing nerves 被引量:2
9
作者 Yuxin Gao Honghu Zhu +3 位作者 Liang Qiao Xifeng Liu Chao Wei Wei Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期3059-3070,共12页
Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This pa... Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This paper presents an experimental study to evaluate the feasibility of fiber optic strain sensing nerves in sinkhole monitoring.Combining the artificial neural network(ANN)and particle image velocimetry(PIV)techniques,a series of model tests have been performed to explore the relationship between strain measurements and sinkhole development and to establish a conversion model from strain data to ground settlements.It is demonstrated that the failure mechanism of the soil above the sinkhole developed from a triangle failure plane to a vertical failure plane with increasing collapse volume.Meanwhile,the soil-embedded fiber optic strain sensing nerves allowed deformation monitoring of the ground soil in real time.Furthermore,the characteristics of the measured strain profiles indicate the locations of sinkholes and the associated shear bands.Based on the strain data,the ANN model predicts the ground settlement well.Additionally,micro-anchored fiber optic cables have been proven to increase the soil-to-fiber strain transfer efficiency for large deformation monitoring of ground collapse. 展开更多
关键词 SINKHOLE Geotechnical monitoring Distributed fiber optic sensing(DFOS) artificial neural network(ANN) Ground settlement Soil arching Micro-anchor
下载PDF
A Review on Back-Propagation Neural Networks in the Application of Remote Sensing Image Classification 被引量:2
10
作者 Alaeldin Suliman Yun Zhang 《Journal of Earth Science and Engineering》 2015年第1期52-65,共14页
ANNs (Artificial neural networks) are used extensively in remote sensing image processing. It has been proven that BPNNs (back-propagation neural networks) have high attainable classification accuracy. However, th... ANNs (Artificial neural networks) are used extensively in remote sensing image processing. It has been proven that BPNNs (back-propagation neural networks) have high attainable classification accuracy. However, there is a noticeable variation in the achieved accuracies due to different network designs and implementations. Hence, researchers usually need to conduct several experimental trials before they can finalize the network design. This is a time consuming process which significantly reduces the effectiveness of using BPNNs and the final design may still not be optimal. Therefore, there is a need to see whether there are some common guidelines for effective design and implementation of BPNNs. With this aim in mind, this paper attempts to find and summarize the common guidelines suggested by different authors through literature review and discussion of the findings. To provide readers with background and contextual information, some ANN fundamentals are also introduced. 展开更多
关键词 artificial neural networks back propagation CLASSIFICATION remote sensing.
下载PDF
High-throughput phenotyping of plant leaf morphological, physiological,and biochemical traits on multiple scales using optical sensing 被引量:1
11
作者 Huichun Zhang Lu Wang +2 位作者 Xiuliang Jin Liming Bian Yufeng Ge 《The Crop Journal》 SCIE CSCD 2023年第5期1303-1318,共16页
Acquisition of plant phenotypic information facilitates plant breeding, sheds light on gene action, and can be applied to optimize the quality of agricultural and forestry products. Because leaves often show the faste... Acquisition of plant phenotypic information facilitates plant breeding, sheds light on gene action, and can be applied to optimize the quality of agricultural and forestry products. Because leaves often show the fastest responses to external environmental stimuli, leaf phenotypic traits are indicators of plant growth,health, and stress levels. Combination of new imaging sensors, image processing, and data analytics permits measurement over the full life span of plants at high temporal resolution and at several organizational levels from organs to individual plants to field populations of plants. We review the optical sensors and associated data analytics used for measuring morphological, physiological, and biochemical traits of plant leaves on multiple scales. We summarize the characteristics, advantages and limitations of optical sensing and data-processing methods applied in various plant phenotyping scenarios. Finally, we discuss the future prospects of plant leaf phenotyping research. This review aims to help researchers choose appropriate optical sensors and data processing methods to acquire plant leaf phenotypes rapidly,accurately, and cost-effectively. 展开更多
关键词 Leaf traits Optical sensing Image processing Machine learning artificial intelligence
下载PDF
Improve the Accuracy of Fall Detection Based on Artificial Intelligence Algorithm 被引量:1
12
作者 Ming-Chih Chen Yin-Ting Cheng Ru-Wei Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第9期1103-1119,共17页
This work presents a fall detection system based on artificial intelligence.The system incorporates miniature wearable devices for fall detection.Fall detection is achieved by integrating a three-axis gyroscope and a ... This work presents a fall detection system based on artificial intelligence.The system incorporates miniature wearable devices for fall detection.Fall detection is achieved by integrating a three-axis gyroscope and a threeaxis accelerometer.The system gathers the differential data collected by the gyroscope and accelerometer,applies artificial intelligence algorithms for model training and constructs an effective model for fall detection.To provide easywearing and effective position detection,it is designed as a small device attached to the user’swaist.Experiment results have shown that the accuracy of the proposed fall detection model is up to 98%,demonstrating the effectiveness of the model in real-life fall detection. 展开更多
关键词 artificial intelligence fall detection miniature sensing device
下载PDF
Irrigation Scheduling Using Remote Sensing Data Assimilation Approach
13
作者 Baburao Kamble Ayse Irmak +1 位作者 Kenneth Hubbard Prasanna Gowda 《Advances in Remote Sensing》 2013年第3期258-268,共11页
Remote sensing and crop growth models have enhanced our ability to understand soil water balance in irrigated agriculture. However, limited efforts have been made to adopt data assimilation methodologies in these link... Remote sensing and crop growth models have enhanced our ability to understand soil water balance in irrigated agriculture. However, limited efforts have been made to adopt data assimilation methodologies in these linked models that use stochastic parameter estimation with genetic algorithm (GA) to improve irrigation scheduling. In this study, an innovative irrigation scheduling technique, based on soil moisture and crop water productivity, was evaluated with data from Sirsa Irrigation Circle of Haryana State, India. This was done by integrating SEBAL (Surface Energy Balance Algorithm for Land)-based evapotranspiration (ET) rates with the SWAP (Soil-Water-Atmosphere-Plant), a process-based crop growth model, using a GA. Remotely sensed ET and ground measurements from an experiment field were combined to estimate SWAP model parameters such as sowing and harvesting dates, irrigation scheduling, and groundwater levels to estimate soil moisture. Modeling results showed that estimated sowing, harvesting, and irrigation application dates were within ±10 days of observations and produced good estimates of ET and soil moisture fluxes. The SWAP-GA model driven by the remotely sensed ET moderately improved surface soil moisture estimates suggesting that it has the potential to serve as an operational tool for irrigation scheduling purposes. 展开更多
关键词 artificial NEURAL Network GENETIC Algorithms SEBAL REMOTE sensing GROUNDWATER CROP Growth Modeling
下载PDF
The Monitoring of Red Tides Based on Modular Neural Networks Using Airborne Hyperspectral Remote Sensing
14
作者 JI Guangrong SUN Jie +1 位作者 ZHAO Wencang ZHANG Hande 《Journal of Ocean University of China》 SCIE CAS 2006年第2期169-173,共5页
This paper proposes a red tide monitoring method based on clustering and modular neural networks. To obtain the features of red tide from a mass of aerial remote sensing hyperspectral data, first the Log Residual Corr... This paper proposes a red tide monitoring method based on clustering and modular neural networks. To obtain the features of red tide from a mass of aerial remote sensing hyperspectral data, first the Log Residual Correction (LRC) is used to normalize the data, and then clustering analysis is adopted to select and form the training samples for the neural networks. For rapid monitoring, the discriminator is composed of modular neural networks, whose structure and learning parameters are determined by an Adaptive Genetic Algorithm (AGA). The experiments showed that this method can monitor red tide rapidly and effectively. 展开更多
关键词 aeronautic remote sensing hyper-spectral data red tide monitoring artificial neural networks
下载PDF
Intelligent Deep Data Analytics Based Remote Sensing Scene Classification Model
15
作者 Ahmed Althobaiti Abdullah Alhumaidi Alotaibi +2 位作者 Sayed Abdel-Khalek Suliman A.Alsuhibany Romany F.Mansour 《Computers, Materials & Continua》 SCIE EI 2022年第7期1921-1938,共18页
Latest advancements in the integration of camera sensors paves a way for newUnmannedAerialVehicles(UAVs)applications such as analyzing geographical(spatial)variations of earth science in mitigating harmful environment... Latest advancements in the integration of camera sensors paves a way for newUnmannedAerialVehicles(UAVs)applications such as analyzing geographical(spatial)variations of earth science in mitigating harmful environmental impacts and climate change.UAVs have achieved significant attention as a remote sensing environment,which captures high-resolution images from different scenes such as land,forest fire,flooding threats,road collision,landslides,and so on to enhance data analysis and decision making.Dynamic scene classification has attracted much attention in the examination of earth data captured by UAVs.This paper proposes a new multi-modal fusion based earth data classification(MMF-EDC)model.The MMF-EDC technique aims to identify the patterns that exist in the earth data and classifies them into appropriate class labels.The MMF-EDC technique involves a fusion of histogram of gradients(HOG),local binary patterns(LBP),and residual network(ResNet)models.This fusion process integrates many feature vectors and an entropy based fusion process is carried out to enhance the classification performance.In addition,the quantum artificial flora optimization(QAFO)algorithm is applied as a hyperparameter optimization technique.The AFO algorithm is inspired by the reproduction and the migration of flora helps to decide the optimal parameters of the ResNet model namely learning rate,number of hidden layers,and their number of neurons.Besides,Variational Autoencoder(VAE)based classification model is applied to assign appropriate class labels for a useful set of feature vectors.The proposedMMF-EDCmodel has been tested using UCM and WHU-RS datasets.The proposed MMFEDC model attains exhibits promising classification results on the applied remote sensing images with the accuracy of 0.989 and 0.994 on the test UCM and WHU-RS dataset respectively. 展开更多
关键词 Remote sensing unmanned aerial vehicles deep learning artificial intelligence scene classification
下载PDF
Optimal Deep Convolutional Neural Network for Vehicle Detection in Remote Sensing Images
16
作者 Saeed Masoud Alshahrani Saud S.Alotaibi +5 位作者 Shaha Al-Otaibi Mohamed Mousa Anwer Mustafa Hilal Amgad Atta Abdelmageed Abdelwahed Motwakel Mohamed I.Eldesouki 《Computers, Materials & Continua》 SCIE EI 2023年第2期3117-3131,共15页
Object detection(OD)in remote sensing images(RSI)acts as a vital part in numerous civilian and military application areas,like urban planning,geographic information system(GIS),and search and rescue functions.Vehicle ... Object detection(OD)in remote sensing images(RSI)acts as a vital part in numerous civilian and military application areas,like urban planning,geographic information system(GIS),and search and rescue functions.Vehicle recognition from RSIs remained a challenging process because of the difficulty of background data and the redundancy of recognition regions.The latest advancements in deep learning(DL)approaches permit the design of effectual OD approaches.This study develops an Artificial Ecosystem Optimizer with Deep Convolutional Neural Network for Vehicle Detection(AEODCNN-VD)model on Remote Sensing Images.The proposed AEODCNN-VD model focuses on the identification of vehicles accurately and rapidly.To detect vehicles,the presented AEODCNN-VD model employs single shot detector(SSD)with Inception network as a baseline model.In addition,Multiway Feature Pyramid Network(MFPN)is used for handling objects of varying sizes in RSIs.The features from the Inception model are passed into theMFPNformultiway andmultiscale feature fusion.Finally,the fused features are passed into bounding box and class prediction networks.For enhancing the detection efficiency of the AEODCNN-VD approach,AEO based hyperparameter optimizer is used,which is stimulated by the energy transfer strategies such as production,consumption,and decomposition in an ecosystem.The performance validation of the presentedmethod on benchmark datasets showed promising performance over recent DL models. 展开更多
关键词 Object detection remote sensing vehicle detection artificial ecosystem optimizer convolutional neural network
下载PDF
Estimating Monthly Surface Air Temperature Using MODIS LST Data and an Artificial Neural Network in the Loess Plateau, China
17
作者 HE Tian LIU Fuyuan +1 位作者 WANG Ao FEI Zhanbo 《Chinese Geographical Science》 SCIE CSCD 2023年第4期751-763,共13页
Air temperature(Ta)datasets with high spatial and temporal resolutions are needed in a wide range of applications,such as hydrology,ecology,agriculture,and climate change studies.Nonetheless,the density of weather sta... Air temperature(Ta)datasets with high spatial and temporal resolutions are needed in a wide range of applications,such as hydrology,ecology,agriculture,and climate change studies.Nonetheless,the density of weather station networks is insufficient,especially in sparsely populated regions,greatly limiting the accuracy of estimates of spatially distributed Ta.Due to their continuous spatial coverage,remotely sensed land surface temperature(LST)data provide the possibility of exploring spatial estimates of Ta.However,because of the complex interaction of land and climate,retrieval of Ta from the LST is still far from straightforward.The estimation accuracy varies greatly depending on the model,particularly for maximum Ta.This study estimated monthly average daily minimum temperature(Tmin),average daily maximum temperature(Tmax)and average daily mean temperature(Tmean)over the Loess Plateau in China based on Moderate Resolution Imaging Spectroradiometer(MODIS)LST data(MYD11A2)and some auxiliary data using an artificial neural network(ANN)model.The data from 2003 to 2010 were used to train the ANN models,while 2011 to 2012 weather station temperatures were used to test the trained model.The results showed that the nighttime LST and mean LST provide good estimates of Tmin and Tmean,with root mean square errors(RMSEs)of 1.04℃ and 1.01℃,respectively.Moreover,the best RMSE of Tmax estimation was 1.27℃.Compared with the other two published Ta gridded datasets,the produced 1 km×1 km dataset accurately captured both the temporal and spatial patterns of Ta.The RMSE of Tmin estimation was more sensitive to elevation,while that of Tmax was more sensitive to month.Except for land cover type as the input variable,which reduced the RMSE by approximately 0.01℃,the other vegetation-related variables did not improve the performance of the model.The results of this study indicated that ANN,a type of machine learning method,is effective for long-term and large-scale Ta estimation. 展开更多
关键词 air temperature land surface temperature(LST) artificial neural network(ANN) remote sensing climate change Loess Plateau China
下载PDF
Recent Advances in Artificial Sensory Neurons:Biological Fundamentals,Devices,Applications,and Challenges
18
作者 Shuai Zhong Lirou Su +4 位作者 Mingkun Xu Desmond Loke Bin Yu Yishu Zhang Rong Zhao 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期168-216,共49页
Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantage... Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantages,convertingthe external analog signals to spikes is an essential prerequisite.Conventionalapproaches including analog-to-digital converters or ring oscillators,and sensorssuffer from high power and area costs.Recent efforts are devoted to constructingartificial sensory neurons based on emerging devices inspired by the biologicalsensory system.They can simultaneously perform sensing and spike conversion,overcoming the deficiencies of traditional sensory systems.This review summarizesand benchmarks the recent progress of artificial sensory neurons.It starts with thepresentation of various mechanisms of biological signal transduction,followed bythe systematic introduction of the emerging devices employed for artificial sensoryneurons.Furthermore,the implementations with different perceptual capabilitiesare briefly outlined and the key metrics and potential applications are also provided.Finally,we highlight the challenges and perspectives for the future development of artificial sensory neurons. 展开更多
关键词 artificial intelligence Emerging devices artificial sensory neurons Spiking neural networks Neuromorphic sensing
下载PDF
基于快速分裂Bregman迭代的全变差正则化SENSE磁共振图像重建 被引量:1
19
作者 吴春俐 朱学欢 +1 位作者 翟江南 丁山 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第1期24-28,共5页
在并行磁共振成像中,由于敏感度编码(SENSE)重建过程的病态性,当加速因子增大时,其重建图像的信噪比将会明显降低.通过深入分析全变差(TV)正则化的SENSE重建模型,引入一种高效快速的分裂Bregman迭代算法来得到优化解,进而有效改善图像... 在并行磁共振成像中,由于敏感度编码(SENSE)重建过程的病态性,当加速因子增大时,其重建图像的信噪比将会明显降低.通过深入分析全变差(TV)正则化的SENSE重建模型,引入一种高效快速的分裂Bregman迭代算法来得到优化解,进而有效改善图像重建效果.分别对磁共振的体模数据和大脑数据进行仿真实验研究.结果表明,与传统TV正则化SENSE重建相比,此算法不但迭代次数少、收敛速度快,而且能够有效消除混叠伪影,提高图像信噪比并减小归一化均方误差. 展开更多
关键词 敏感度编码(sensE) 磁共振图像重建 全变差正则化 人工时间演化法 分裂Bregman迭代
下载PDF
Remote sensing-based artificial surface cover classification in Asia and spatial pattern analysis 被引量:13
20
作者 KUANG WenHui CHEN LiJun +6 位作者 LIU JiYuan XIANG WeiNing CHI WenFeng LU DengSheng YANG TianRong PAN Tao LIU AiLin 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第9期1720-1737,共18页
Artificial surfaces, characterized with intensive land-use changes and complex landscape structures, are important indicators of human impacts on terrestrial ecosystems. Without high-resolution land-cover data at cont... Artificial surfaces, characterized with intensive land-use changes and complex landscape structures, are important indicators of human impacts on terrestrial ecosystems. Without high-resolution land-cover data at continental scale, it is hard to evaluate the impacts of urbanization on regional climate, ecosystem processes and global environment. This study constructed a hierarchical classification system for artificial surfaces, promoted a remote sensing method to retrieve subpixel components of artificial surfaces from 30-m resolution satellite imageries(Globe Land30) and developed a series of data products of high-precision urban built-up areas including impervious surface and vegetation cover in Asia in 2010. Our assessment, based on multisource data and expert knowledge, showed that the overall accuracy of classification was 90.79%. The mean relative error for the impervious surface components of cities was 0.87. The local error of the extracted information was closely related to the heterogeneity of urban buildings and vegetation in different climate zones. According to our results, the urban built-up area was 18.18×104 km2, accounting for 0.59% of the total land surface areas in Asia; urban impervious surfaces were 11.65×104 km2, accounting for 64.09% of the total urban built-up area in Asia. Vegetation and bare soils accounted for 34.56% of the urban built-up areas. There were three gradients: a concentrated distribution, a scattered distribution and an indeterminate distribution from east to west in terms of spatial pattern of urban impervious surfaces. China, India and Japan ranked as the top three countries with the largest impervious surface areas, which respectively accounted for 32.77%, 16.10% and 11.93% of the urban impervious surface area of Asia. We found the proportions of impervious surface and vegetation cover within urban built-up areas were closely related to the economic development degree of the country and regional climate environment. Built-up areas in developed countries had relatively low impervious surface and high public green vegetation cover, with 50–60% urban impervious surfaces in Japan, South Korea and Singapore. In comparison, the proportion of urban impervious surfaces in developing countries is approaching or exceeding 80% in Asia. In general, the composition and spatial patterns of built-up areas reflected population aggregation and economic development level as well as their impacts on the health of the environment in the sub-watershed. 展开更多
关键词 artificial surface cover CITY Impervious surface Vegetation cover Remote sensing classification ASIA
原文传递
上一页 1 2 24 下一页 到第
使用帮助 返回顶部