期刊文献+
共找到604篇文章
< 1 2 31 >
每页显示 20 50 100
Revisiting Educational Issues in the Age of Generative Artificial Intelligence
1
作者 Zhengyu Yang 《Journal of Contemporary Educational Research》 2024年第1期159-164,共6页
The emergence of generative artificial intelligence(AI)has had a huge impact on all areas of life,including the field of education.AI can assist teachers in cultivating talents and promoting personalized learning and ... The emergence of generative artificial intelligence(AI)has had a huge impact on all areas of life,including the field of education.AI can assist teachers in cultivating talents and promoting personalized learning and teaching,but it also prevents individuals from thinking independently and creatively.In the era of generative AI,the rapid development of technology and its significant impact on the field of education are inevitable.There are many educational issues related to it,such as teaching methods,student training goals,teaching philosophy and purposes,and other educational issues,that require re-conceptualization and review. 展开更多
关键词 Generative artificial intelligence Educational philosophy Training objectives Creative thinking Personalized learning
下载PDF
An object detection approach with residual feature fusion and second-order term attention mechanism
2
作者 Cuijin Li Zhong Qu Shengye Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第2期411-424,共14页
Automatically detecting and locating remote occlusion small objects from the images of complex traffic environments is a valuable and challenging research.Since the boundary box location is not sufficiently accurate a... Automatically detecting and locating remote occlusion small objects from the images of complex traffic environments is a valuable and challenging research.Since the boundary box location is not sufficiently accurate and it is difficult to distinguish overlapping and occluded objects,the authors propose a network model with a second-order term attention mechanism and occlusion loss.First,the backbone network is built on CSPDarkNet53.Then a method is designed for the feature extraction network based on an item-wise attention mechanism,which uses the filtered weighted feature vector to replace the original residual fusion and adds a second-order term to reduce the information loss in the process of fusion and accelerate the convergence of the model.Finally,an objected occlusion regression loss function is studied to reduce the problems of missed detections caused by dense objects.Sufficient experimental results demonstrate that the authors’method achieved state-of-the-art performance without reducing the detection speed.The mAP@.5 of the method is 85.8%on the Foggy_cityscapes dataset and the mAP@.5 of the method is 97.8%on the KITTI dataset. 展开更多
关键词 artificial intelligence computer vision image processing machine learning neural network object recognition
下载PDF
Real-Time Object Detection and Face Recognition Application for the Visually Impaired
3
作者 Karshiev Sanjar Soyoun Bang +1 位作者 SookheeRyue Heechul Jung 《Computers, Materials & Continua》 SCIE EI 2024年第6期3569-3583,共15页
The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional appro... The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional approaches primarily focus on broad applications such as wayfinding,obstacle detection,and fall prevention.However,there is a notable discrepancy in applying these technologies to more specific scenarios,like identifying distinct food crop types or recognizing faces.This study proposes a real-time application designed for visually impaired individuals,aiming to bridge this research-application gap.It introduces a system capable of detecting 20 different food crop types and recognizing faces with impressive accuracies of 83.27%and 95.64%,respectively.These results represent a significant contribution to the field of assistive technologies,providing visually impaired users with detailed and relevant information about their surroundings,thereby enhancing their mobility and ensuring their safety.Additionally,it addresses the vital aspects of social engagements,acknowledging the challenges faced by visually impaired individuals in recognizing acquaintances without auditory or tactile signals,and highlights recent developments in prototype systems aimed at assisting with face recognition tasks.This comprehensive approach not only promises enhanced navigational aids but also aims to enrich the social well-being and safety of visually impaired communities. 展开更多
关键词 artificial intelligence deep learning real-time object detection application
下载PDF
Objective Evaluations of the Manner and Effect for Artificial Hail Suppression Operation in the Middle Region of Inner Mongolia
4
作者 BATEER SHAN Jiu-tao BO Ge 《Meteorological and Environmental Research》 2012年第6期41-44,共4页
[ Objective] The research aimed to conduct objective evaluation on manner and effect of the artificial hail suppression operation in central Inner Mongolia. [ Method] Depending on analyses of the radar observation dat... [ Objective] The research aimed to conduct objective evaluation on manner and effect of the artificial hail suppression operation in central Inner Mongolia. [ Method] Depending on analyses of the radar observation data, hail shooting data and artificial hail suppression operation data in the middle region of Inner Mongolia ( represented by Huhhot) from 1990 to 2007, and combining capability of the artificial hail suppression operation tool (" 37" anti-aircraft gun), nucleation rate of the catalyst and suitable catalyst volume in hail cloud per unit volume, objective evaluation of the manner and effect for artificial hail suppression operation in the area was obtained. [ Result] It was exacter to distinguish shape and intensity of the hail cloud, but it was uncertain to distinguish height of the hail cloud, when selecting operation target cloud. Operation height was still lower, and perfect seeding height couldn't be attained. Operation occasion was controlled well, but there still were phenomena of the late operation. Shell amounts of the operation were few obviously, needing to increase shell amount or to improve nucleation rate of the catalyst. [ Conclsion] Syntheti- cally, manner of the artificial hail suppression operation in central Inner Mongolia was suitable, and total efficiency was about 85%. 展开更多
关键词 artificial hail suppression Radar echo Operation manner objective evaluation China
下载PDF
Artificial Intelligence Embedded Object-Oriented Methodology For Model Based Decision Support 被引量:1
5
作者 Feng Shan Tian Yuan Li Tong & Cai Jun (Institute of System Engineering, Department of Automatic Control Engineering Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1996年第1期1-14,共14页
The paper presents the coupling of artificial intelligence-AI and Object-oriented methodology applied for the construction of the model-based decision support system MBDSS.The MBDSS is designed for support the strate... The paper presents the coupling of artificial intelligence-AI and Object-oriented methodology applied for the construction of the model-based decision support system MBDSS.The MBDSS is designed for support the strategic decision making lead to the achievemellt of optimal path towardsmarket economy from the central planning situation in China. To meet user's various requirements,a series of innovations in software development have been carried out, such as system formalization with OBFRAMEs in an object-oriented paradigm for problem solving automation and techniques of modules intelligent cooperation, hybrid system of reasoning, connectionist framework utilization,etc. Integration technology has been highly emphasized and discussed in this article and an outlook to future software engineering is given in the conclusion section. 展开更多
关键词 artificial intelligence object-oriented methodology Knowledge-based systems Intelligently cooperative systems Neural nets Case hased reasoning Behavioral science Advancedautomation.
下载PDF
Research on the Innovation in the Model of Cultivating Sci-Tech Translation Talents in Universities of Science and Engineering from the Perspective of Artificial Intelligence-Generated Content
6
作者 Gelan Zhang Wenjing Liao 《Journal of Contemporary Educational Research》 2024年第11期137-144,共8页
New technologies represented by ChatGPT have transformed traditional translation work modes and brought unprecedented changes to translation teaching.Based on the development of artificial intelligence-generated conte... New technologies represented by ChatGPT have transformed traditional translation work modes and brought unprecedented changes to translation teaching.Based on the development of artificial intelligence-generated content(AIGC)technology,this article analyzes the challenges it brings to sci-tech translation research in the new era,reshapes the value goals of the“ideological and political guidance+technological empowerment”model of cultivating sci-tech translation talents,proposes tentative approaches about the innovation in the model of sci-tech translation talents in universities of science and engineering,and strengthens the talents’translation competence,language proficiency,and interdisciplinary ability,aiming to provide new perspectives and thoughts for the development of translation research in the AIGC era. 展开更多
关键词 artificial intelligence-generated content Sci-tech translation Talent cultivation Interdisciplinary
下载PDF
Multiple Data Augmentation Strategy for Enhancing the Performance of YOLOv7 Object Detection Algorithm 被引量:1
7
作者 Abdulghani M.Abdulghani Mokhles M.Abdulghani +1 位作者 Wilbur L.Walters Khalid H.Abed 《Journal on Artificial Intelligence》 2023年第1期15-30,共16页
The object detection technique depends on various methods for duplicating the dataset without adding more images.Data augmentation is a popularmethod that assists deep neural networks in achieving better generalizatio... The object detection technique depends on various methods for duplicating the dataset without adding more images.Data augmentation is a popularmethod that assists deep neural networks in achieving better generalization performance and can be seen as a type of implicit regularization.Thismethod is recommended in the casewhere the amount of high-quality data is limited,and gaining new examples is costly and time-consuming.In this paper,we trained YOLOv7 with a dataset that is part of the Open Images dataset that has 8,600 images with four classes(Car,Bus,Motorcycle,and Person).We used five different data augmentations techniques for duplicates and improvement of our dataset.The performance of the object detection algorithm was compared when using the proposed augmented dataset with a combination of two and three types of data augmentation with the result of the original data.The evaluation result for the augmented data gives a promising result for every object,and every kind of data augmentation gives a different improvement.The mAP@.5 of all classes was 76%,and F1-score was 74%.The proposed method increased the mAP@.5 value by+13%and F1-score by+10%for all objects. 展开更多
关键词 artificial intelligence object detection YOLOv7 data augmentation data brightness data darkness data blur data noise convolutional neural network
下载PDF
人工智能生成内容的著作权客体性思考——兼论作品判定的独创性标准选择 被引量:10
8
作者 杨利华 王诗童 《北京航空航天大学学报(社会科学版)》 CSSCI 2024年第2期50-62,共13页
以基于转换器的生成式预训练模型(GPT)为代表的高阶人工智能凭借其强大的智能型内容生成机制,使得内容产品生产中的技术占比不断上升,人的直接投入占比相对下降,传统著作权法作品的独创性要求、权利人本原则等基本理论受到冲击。面对人... 以基于转换器的生成式预训练模型(GPT)为代表的高阶人工智能凭借其强大的智能型内容生成机制,使得内容产品生产中的技术占比不断上升,人的直接投入占比相对下降,传统著作权法作品的独创性要求、权利人本原则等基本理论受到冲击。面对人工智能生成内容(AIGC)可作品性问题,基于自然人智力投入的创造性本质理论和闭合性作品概念显得力不从心。在过程视角下(主观标准),人工智能内容生成过程符合人类创作的思维特征;在结果视角下(客观标准),人工智能生成内容具有著作权作品的外观形式和信息消费功能,符合著作权作品的本质属性。如果人为割裂人工智能生成内容与著作权作品在产生过程和实质作用上的同质关系,强行区分人工智能生成内容和自然人创作作品的法律性质,则有悖著作权法因应技术发展调整信息消费品利益的制度旨趣,最终将导致著作权法律秩序的混乱。 展开更多
关键词 基于转换器的生成式预训练模型(GPT) 生成式人工智能 人工智能生成内容(AIGC) 著作权法客体 独创性标准
下载PDF
基于路径规划特点的语义目标导航方法 被引量:2
9
作者 高宇 霍静 +3 位作者 李文斌 伍静 来煜坤 高阳 《智能系统学报》 CSCD 北大核心 2024年第1期217-227,共11页
为了解决语义目标导航任务中存在的探索效率低、深度不精准等问题,本文构建了一个解决语义目标导航任务的框架,在语义地图构建模块中引入了深度图边缘处理以及地图纠错机制;在探索模块中引入了覆盖范围最大化算法;在路径规划模块中引入... 为了解决语义目标导航任务中存在的探索效率低、深度不精准等问题,本文构建了一个解决语义目标导航任务的框架,在语义地图构建模块中引入了深度图边缘处理以及地图纠错机制;在探索模块中引入了覆盖范围最大化算法;在路径规划模块中引入了替代点机制。本文在一个3D仿真环境下进行了实验。实验结果表明,本文提出的解决方案明显提升了语义目标导航任务的性能。此外,本文所提方法成功应用到了四足机器人上,从而验证了其在现实场景下的泛化性。 展开更多
关键词 人工智能 视觉导航 语义目标导航 语义感知 语义探索 路径规划 机器学习 语义地图
下载PDF
基于深度学习SSD算法的高密度电法智能解译方法技术研究 被引量:1
10
作者 师学明 黄崇钰 +2 位作者 王瑞 李斌才 郑洪 《工程地球物理学报》 2024年第1期1-11,共11页
高密度电法在探测灰岩区地下溶洞病害体方面得到广泛应用,但高密度电法反演结果依赖于初始模型,存在多解性,地质解译容易受专业人员主观因素影响。为此,本文从具有唯一性的视电阻率数据出发,研究了基于深度学习的SSD(Single Shot Multi-... 高密度电法在探测灰岩区地下溶洞病害体方面得到广泛应用,但高密度电法反演结果依赖于初始模型,存在多解性,地质解译容易受专业人员主观因素影响。为此,本文从具有唯一性的视电阻率数据出发,研究了基于深度学习的SSD(Single Shot Multi-box Detector)目标检测算法的视电阻率异常智能解译方法技术。针对岩溶地质病害,设计了不同填充类型、形状、规模、数量的溶洞电性异常模型,利用Res2dmod软件进行视电阻率正演计算,构建了包含1400个样本的高密度电法视电阻率智能解译学习样本库(样本和标签)。基于TensorFlow框架,建立了基于深度学习SSD算法的高密度电法视电阻率异常智能解译方法技术,使用学习样本库训练网络权值,训练结束后对高密电法温纳装置视电阻率异常进行智能解译,单个视电阻率剖面异常智能解译耗时不到1 s,各类目标(填充型溶洞、未填充型溶洞)平均准确率为90.68%。研究结果表明:基于SSD算法的高密度电法视电阻率异常智能解译技术可显著提高高密度电法视电阻率解译效率,避免专业人员主观因素影响。 展开更多
关键词 高密度电法 温纳装置 视电阻率 SSD目标检测算法 智能解译
下载PDF
改进多目标蜂群算法优化洗出运动及仿真实验 被引量:1
11
作者 王辉 彭乐 《系统仿真学报》 CAS CSCD 北大核心 2024年第2期436-448,共13页
针对经典洗出算法参数选择不当导致信号缺失,引起失真,影响洗出效果等问题,提出一种改进的多目标人工蜂群算法,利用该算法对经典洗出算法中的滤波器参数进行优化来改善洗出算法的洗出效果。针对传统蜂群算法初始化和局部优化中存在的问... 针对经典洗出算法参数选择不当导致信号缺失,引起失真,影响洗出效果等问题,提出一种改进的多目标人工蜂群算法,利用该算法对经典洗出算法中的滤波器参数进行优化来改善洗出算法的洗出效果。针对传统蜂群算法初始化和局部优化中存在的问题,引入Circle映射和Pareto局部优化算法;建立人体感知误差模型、加速度差值模型、位移模型,将模型函数作为目标函数,用改进后的多目标人工蜂群算法对经典洗出算法进行参数优化;建立仿真模型对优化后的洗出算法进行仿真验证,应用飞行模拟器运动实验平台进行实验验证。结果表明:经优化后的洗出算法,洗出逼真度得到有效提升,降低了误差峰值,改善了相位延迟,节省了运动空间。 展开更多
关键词 多目标优化 人工蜂群算法 洗出算法 参数优化 动感逼真度
下载PDF
红外图像量化影响目标检测性能实验研究
12
作者 徐文辉 钟胜 +1 位作者 邹旭 何顶新 《实验室研究与探索》 CAS 北大核心 2024年第5期15-20,共6页
为了研究不同红外图像量化方法对目标检测网络性能影响的差异,将红外图像量化对深度学习目标检测网络性能影响的研究和分析设计成教学实验。实验内容涉及图像处理、模式识别、计算机视觉等多个专业课程。实验过程包括红外图像量化、网... 为了研究不同红外图像量化方法对目标检测网络性能影响的差异,将红外图像量化对深度学习目标检测网络性能影响的研究和分析设计成教学实验。实验内容涉及图像处理、模式识别、计算机视觉等多个专业课程。实验过程包括红外图像量化、网络模型训练、测试分析等多个环节,贯穿基于深度学习的高层视觉任务开发全流程。该实验紧跟学科前沿,促进学生科研能力和综合素质的培养。 展开更多
关键词 红外图像量化 目标检测 人工智能 教研协同
下载PDF
基于实时目标检测网络的胎儿颜面部超声切面识别及应用
13
作者 刘中华 余卫峰 +4 位作者 吴秀明 薛浩 吕国荣 王小莉 柳培忠 《中国医学物理学杂志》 CSCD 2024年第2期247-252,共6页
目的:探讨基于实时目标检测网络的人工智能(AI)模型在胎儿颜面部超声检查中的应用价值。方法:以妊娠20~24周正常胎儿颜面部超声标准切面(FFUSP)图像为研究对象,构建基于实时目标检测网络的FFUSP识别模型,观察其对FFUSP及其解剖结构的识... 目的:探讨基于实时目标检测网络的人工智能(AI)模型在胎儿颜面部超声检查中的应用价值。方法:以妊娠20~24周正常胎儿颜面部超声标准切面(FFUSP)图像为研究对象,构建基于实时目标检测网络的FFUSP识别模型,观察其对FFUSP及其解剖结构的识别精度;通过临床验证分析其对119例胎儿超声图像中FFUSP识别效能以评价其临床应用价值。结果:AI模型对胎儿颜面部结构识别的整体查准率为97.8%、查全率为98.5%、mAP@.5为98.1%、mAP@.5:.95为61.0%。在临床验证中,AI模型对颜面部解剖结构识别的敏感度、特异度、阳性预测值、阴性预测值及准确率分别为100.0%、98.5%、87.4%、100.0%、98.7%,与胎儿超声专家分类一致性强(k=0.925,P<0.001);对3类标准切面图像的识别准确率为100%;动态视频检测平均速度为33.93帧/s。结论:基于实时目标检测网络的FFUSP识别模型性能优越,可应用于实时超声检查辅助诊断、教学及智能化质量评价。 展开更多
关键词 超声检查 人工智能 实时目标检测网络 胎儿 颜面部
下载PDF
技术与社会转型互构下的“人工智能+”:新质生产力发展引擎
14
作者 梁玉成 张硕辰 《浙江工商大学学报》 CSSCI 北大核心 2024年第5期116-128,共13页
“人工智能+”叠加了更多学科领域的力量,是发展新质生产力的重要影响因素,这一影响不仅是由于技术本身具备高科技含量,而且和技术与社会转型之间的快速互构有关。参照法国哲学家吉尔伯特·西蒙东提出的“技术物”这一概念,“人工智... “人工智能+”叠加了更多学科领域的力量,是发展新质生产力的重要影响因素,这一影响不仅是由于技术本身具备高科技含量,而且和技术与社会转型之间的快速互构有关。参照法国哲学家吉尔伯特·西蒙东提出的“技术物”这一概念,“人工智能+”为现代社会带来了“智能物”。“智能物”比传统意义上的“技术物”更具有能动性,能够快速吸收处理海量数据信息并针对某一领域进行社会化模拟,影响人类的生产活动,人类也因此产生了对更高效、更便捷、更智能的生活和工作方式的追求,这一互构反馈机制对新质生产力的发展形成了必要环境。而随着“人工智能+”覆盖面的增大,智能物对生产效能、产业增长、产业竞争、生产关系等方面也产生了相应的影响。 展开更多
关键词 智能物 人工智能+ 新质生产力 技术物
下载PDF
超网络体系作战下的打击目标优选模型 被引量:2
15
作者 高泽伦 郑少秋 +1 位作者 梁汝鹏 黄炎焱 《系统工程与电子技术》 EI CSCD 北大核心 2024年第1期182-189,共8页
针对当前进行海上作战体系目标优选分析与决策时对打击代价考虑不足的问题,提出综合考虑目标节点重要度和打击费效度的网络节点分析模型。利用超网络构建海上作战体系网络模型,通过度和介数等指标评估网络中节点的重要度;利用打击费效... 针对当前进行海上作战体系目标优选分析与决策时对打击代价考虑不足的问题,提出综合考虑目标节点重要度和打击费效度的网络节点分析模型。利用超网络构建海上作战体系网络模型,通过度和介数等指标评估网络中节点的重要度;利用打击费效比为指标评估网络中节点的打击代价,进而将目标分析与选择问题转化为多目标优化问题,建立寻优模型,并通过人工鱼群算法进行寻优求解。最后对模型进行案例仿真应用,通过专家Delphi法评估检验,结果表明所建立的模型方法可行,对水面舰队体系的目标分析与选择具有借鉴作用。 展开更多
关键词 目标选择 超网络 打击代价 人工鱼群算法 多目标优化
下载PDF
基于人工蜂群算法的大规模武器目标分配研究 被引量:1
16
作者 周玉虎 王桐 +2 位作者 陈立伟 付李悦 韦正现 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第6期1187-1195,共9页
针对大规模武器目标分配问题,本文提出一种改进的多目标武器目标分配模型,该模型将武器平台泛化为武器,并将武器平均飞行时间作为第2个优化目标。为有效解决这类问题,本文还提出了改进的自适应离散多目标人工蜂群算法。该算法基于人工... 针对大规模武器目标分配问题,本文提出一种改进的多目标武器目标分配模型,该模型将武器平台泛化为武器,并将武器平均飞行时间作为第2个优化目标。为有效解决这类问题,本文还提出了改进的自适应离散多目标人工蜂群算法。该算法基于人工蜂群算法和非支配排序策略,引入了自适应算子操作数、重用蜜源探索信息的变异概率策略,并通过蜜源之间、蜜源与外部解集之间的交互以提高算法的收敛性,通过算子的随机选择保持种群多样性。最后通过不同规模武器目标分配的对比实验,证明了所提自适应算子操作数与重用蜜源探索次数的变异概率策略的有效性,并与MOABC、MOPSO、NSGA-II算法在反向世代距离、超体积、时间3个方面进行比较,本文算法能够在保证时效性的前提下得到质量更好的Pareto解集。 展开更多
关键词 人工蜂群算法 大规模 武器目标分配 多目标优化 自适应 算子操作数 非支配排序
下载PDF
Automatic detection of small bowel lesions with different bleeding risks based on deep learning models 被引量:1
17
作者 Rui-Ya Zhang Peng-Peng Qiang +5 位作者 Ling-Jun Cai Tao Li Yan Qin Yu Zhang Yi-Qing Zhao Jun-Ping Wang 《World Journal of Gastroenterology》 SCIE CAS 2024年第2期170-183,共14页
BACKGROUND Deep learning provides an efficient automatic image recognition method for small bowel(SB)capsule endoscopy(CE)that can assist physicians in diagnosis.However,the existing deep learning models present some ... BACKGROUND Deep learning provides an efficient automatic image recognition method for small bowel(SB)capsule endoscopy(CE)that can assist physicians in diagnosis.However,the existing deep learning models present some unresolved challenges.AIM To propose a novel and effective classification and detection model to automatically identify various SB lesions and their bleeding risks,and label the lesions accurately so as to enhance the diagnostic efficiency of physicians and the ability to identify high-risk bleeding groups.METHODS The proposed model represents a two-stage method that combined image classification with object detection.First,we utilized the improved ResNet-50 classification model to classify endoscopic images into SB lesion images,normal SB mucosa images,and invalid images.Then,the improved YOLO-V5 detection model was utilized to detect the type of lesion and its risk of bleeding,and the location of the lesion was marked.We constructed training and testing sets and compared model-assisted reading with physician reading.RESULTS The accuracy of the model constructed in this study reached 98.96%,which was higher than the accuracy of other systems using only a single module.The sensitivity,specificity,and accuracy of the model-assisted reading detection of all images were 99.17%,99.92%,and 99.86%,which were significantly higher than those of the endoscopists’diagnoses.The image processing time of the model was 48 ms/image,and the image processing time of the physicians was 0.40±0.24 s/image(P<0.001).CONCLUSION The deep learning model of image classification combined with object detection exhibits a satisfactory diagnostic effect on a variety of SB lesions and their bleeding risks in CE images,which enhances the diagnostic efficiency of physicians and improves the ability of physicians to identify high-risk bleeding groups. 展开更多
关键词 artificial intelligence Deep learning Capsule endoscopy Image classification object detection Bleeding risk
下载PDF
基于YOLO神经网络构建压力性损伤自动检测和分期的人工智能模型
18
作者 王珍妮 须月萍 +2 位作者 夏开建 徐晓丹 顾丽华 《中国全科医学》 CAS 北大核心 2024年第36期4582-4590,共9页
背景随着人口老龄化,压力性损伤(PI)的发病率逐渐增加,这不仅严重影响了患者的生存质量,还增加了医保支出。然而,PI的早期发现和准确分期极大地依赖于专业培训。目的构建并测试一个用于PI自动检测和分期的人工智能模型,以提高PI诊断的... 背景随着人口老龄化,压力性损伤(PI)的发病率逐渐增加,这不仅严重影响了患者的生存质量,还增加了医保支出。然而,PI的早期发现和准确分期极大地依赖于专业培训。目的构建并测试一个用于PI自动检测和分期的人工智能模型,以提高PI诊断的实时性、准确性和客观性。方法选取常熟市第一人民医院压疮电子化管理系统中2021年1月—2024年2月的693张PI图像,将图像随机划分为训练集(551张)和测试集(142张),并按照2019年美国压疮咨询委员会(NPUAP)制订的PI预防和治疗指南分为6期,包括:Ⅰ期154张、Ⅱ期188张、Ⅲ期160张、Ⅳ期82张、深部组织损伤期57张、不可分期52张。利用基于5种不同版本的YOLOv8[nano(n)、small(s)、medium(m)、large(l)和extra large(x)]神经网络和迁移学习,建立针对PI的深度学习目标检测模型。模型评价指标包括精确度、准确率、灵敏度、特异度及检测速度等。最后,通过Ultralytics Hub平台将模型部署到手机应用程序(App)中,实现AI模型在临床工作中的应用。结果在对包含142张PI图像的测试集进行评估时,YOLOv8l版本在确保高精确度(0.827)的同时,也展现了较快的推理速度(68.49帧/s),与其他YOLO版本相比,在精确度与速度之间取得了最佳的平衡。具体而言,其在所有类别上的整体准确率为93.18%,灵敏度为76.52%,特异度为96.29%,假阳性率为3.72%。在6个PI分期中,模型预测Ⅰ期的准确率最高,达到95.97%;预测Ⅱ期、Ⅲ期、Ⅳ期、深部组织损伤期、不可分期分别取得了91.28%、91.28%、91.95%、95.30%和93.29%的准确率。就处理速度而言,YOLOv8l处理142张图像的总耗时为2.07 s,平均每秒可处理68.49张PI图像。结论基于YOLOv8l网络的AI模型能够快速、准确地对PI进行检测和分期。将该模型部署到手机App中,能够在临床实践中便携使用,具有很大的临床应用潜力。 展开更多
关键词 压力性损伤 人工智能 深度学习 YOLO 目标检测 神经网络模型 APP
下载PDF
基于GF-1多光谱影像的河道碍洪物遥感AI识别模型
19
作者 顾祝军 刘斌 +6 位作者 朱骊 丘仕能 任小龙 吴家晟 肖斌 廖广慧 姚露露 《测绘通报》 CSCD 北大核心 2024年第8期84-89,共6页
河道碍洪物是洪涝灾害的重要影响因素,对其进行高效精准监管需引起高度重视。传统的人工巡查难以满足高效精准的应用需求,因此结合人工智能(AI)的遥感技术应用是必经之路。然而诸多的AI模型在遥感应用中的表现尚不清晰,亟待深入探讨。... 河道碍洪物是洪涝灾害的重要影响因素,对其进行高效精准监管需引起高度重视。传统的人工巡查难以满足高效精准的应用需求,因此结合人工智能(AI)的遥感技术应用是必经之路。然而诸多的AI模型在遥感应用中的表现尚不清晰,亟待深入探讨。本文以广西大藤峡库区为例,研究河道碍洪物遥感AI识别模型构建方法。基于GF-1遥感影像,构建碍洪物训练样本集,以ResNet101为核心网络,采用当前主流的6种语义分割模型,包括PSPNet、PAN、MANet、FPN、DeepLabV3+和UNet++,进行碍洪物识别模型训练,进而评估其精度和效率。结果表明:①利用ResNet101作为骨干网络的深度学习模型,在河道碍洪物识别中表现优异,所有模型的F1得分均大于0.70,交并比(IoU)均大于0.58。其中,结合洞卷积和全局池化技术的DeepLabV3+模型的F1得分为0.82,IoU为0.72,体现了其在捕捉上下文信息和微观特征方面的显著优势。②PSPNet在参数量较低的情况下表现出较高的处理效率和精度,每批次能处理8个样本,帧率高达10.49。综上,DeepLabV3+在精确识别和轮廓描绘方面的表现尤为突出,而PSPNet在大规模数据处理上显示出巨大潜力。研究结果可为AI遥感模型构建提供参考,并为河道安全监管提供技术支撑。 展开更多
关键词 GF-1 多光谱 碍洪物 人工智能 识别模型
下载PDF
部分拆装线平衡问题的多目标人工蜂群算法
20
作者 杨琬琳 李梓响 +3 位作者 郑晨昱 张子凯 张利平 唐秋华 《组合机床与自动化加工技术》 北大核心 2024年第10期181-186,192,共7页
拆卸线广泛应用于拆解报废产品,当前大多数的研究关注于废弃产品的完全拆卸,缺乏对拆卸利润和节省碳排放量等的研究。针对部分拆装线平衡,构建了面向利润、节省碳排放量和线平衡的多目标数学模型。为实现问题的高效求解,设计了改进多目... 拆卸线广泛应用于拆解报废产品,当前大多数的研究关注于废弃产品的完全拆卸,缺乏对拆卸利润和节省碳排放量等的研究。针对部分拆装线平衡,构建了面向利润、节省碳排放量和线平衡的多目标数学模型。为实现问题的高效求解,设计了改进多目标人工蜂群算法。该算法采取操作排序向量和拆卸零部件数量的双层编码,同时设计双层解码以分别处理优先关系约束和节拍约束。该算法雇佣蜂阶段采取邻域操作、跟随蜂阶段采取交叉操作以获得差异化的种群,同时侦察蜂阶段采取从永久帕累托前沿选择一个解来替换抛弃的个体以获得高性能的新解。为了测试改进算法的性能,该算法与原始多目标人工蜂群算法、多目标模拟退火算法、快速非支配遗传算法进行对比。测试结果表明改进策略有效提升了人工蜂群算法的性能,同时改进人工蜂群算法优于对比的算法,可实现多目标拆卸线平衡问题的高效求解。 展开更多
关键词 部分拆卸线平衡 碳排放 多目标优化 多目标人工蜂群算法
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部