Various transportation systems have been developed in recent years.In this study,an artificial society model is developed to examine the combination of transportation policies in urban areas.In this model,each trip ma...Various transportation systems have been developed in recent years.In this study,an artificial society model is developed to examine the combination of transportation policies in urban areas.In this model,each trip maker selects the primary and terminal transportation modes.An artificial society model is applied to the southeastern region of Osaka City,Japan.The effects of introducing BRT(bus rapid transit,primary transportation)and on-demand buses(terminal transportation)are investigated.The results confirm that BRT is used by a certain number of users.An increase in the use of BRT will increase the amount of walking,thus resulting in a healthy city.However,on-demand buses are rarely used as terminal transportation.Additionally,the development of bicycle parking stations near BRT stops is shown to be effective in the northern section of the BRT route.展开更多
Artificial intelligence(AI)is making significant strides in revolutionizing the detection of Barrett's esophagus(BE),a precursor to esophageal adenocarcinoma.In the research article by Tsai et al,researchers utili...Artificial intelligence(AI)is making significant strides in revolutionizing the detection of Barrett's esophagus(BE),a precursor to esophageal adenocarcinoma.In the research article by Tsai et al,researchers utilized endoscopic images to train an AI model,challenging the traditional distinction between endoscopic and histological BE.This approach yielded remarkable results,with the AI system achieving an accuracy of 94.37%,sensitivity of 94.29%,and specificity of 94.44%.The study's extensive dataset enhances the AI model's practicality,offering valuable support to endoscopists by minimizing unnecessary biopsies.However,questions about the applicability to different endoscopic systems remain.The study underscores the potential of AI in BE detection while highlighting the need for further research to assess its adaptability to diverse clinical settings.展开更多
According to the basic emotional theory, the artificial emotional model based on the finite state machine(FSM) was presented. In finite state machine model of emotion, the emotional space included the basic emotiona...According to the basic emotional theory, the artificial emotional model based on the finite state machine(FSM) was presented. In finite state machine model of emotion, the emotional space included the basic emotional space and the multiple emotional spaces. The emotion-switching diagram was defined and transition fimction was developed using Markov chain and linear interpolation algorithm. The simulation model was built using Stateflow toolbox and Simulink toolbox based on the Matlab platform. And the model included three subsystems: the input one, the emotion one and the behavior one. In the emotional subsystem, the responses of different personalities to the external stimuli were described by defining personal space. This model takes states from an emotional space and updates its state depending on its current state and a state of its input (also a state-emotion). The simulation model realizes the process of switching the emotion from the neutral state to other basic emotions. The simulation result is proved to correspond to emotion-switching law of human beings.展开更多
Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predic...Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.展开更多
A sub-grid scale(SGS) combustion model, which combines the artificial thickened flame(ATF) model with the flamelet generated manifold(FGM) tabulation method, is proposed. Based on the analysis of laminar flame structu...A sub-grid scale(SGS) combustion model, which combines the artificial thickened flame(ATF) model with the flamelet generated manifold(FGM) tabulation method, is proposed. Based on the analysis of laminar flame structures, two self-contained flame sensors are used to track the diffusion and reaction processes with different spatial scales in the flame front, respectively. The dynamic formulation for the proposed SGS combustion model is also performed. Large eddy simulations(LESs) of Bunsen flame F3 are used to evaluate the different SGS combustion models. The results show that the proposed SGS model has the ability in predicting the distributions of temperature and velocity reasonably, while the predictions for the distributions of some species need further improvement. The snapshots of instantaneous normalized progress variables reveal that the flame is more remarkably and severely wrinkled at the flame tip for flame F3.More satisfactory results obtained by the dynamic model indicate that it can preserve the premixed flame propagation characteristics better.展开更多
In this paper, the artificial neural network(ANN) model was used to evaluate the degree of intensive urban land use in Nanjing City, China. The construction and application of the ANN model took into account the compr...In this paper, the artificial neural network(ANN) model was used to evaluate the degree of intensive urban land use in Nanjing City, China. The construction and application of the ANN model took into account the comprehensive, spatial and complex nature of urban land use. Through a preliminary calculation of the degree of intensive land use of the sample area, representative sample area selection and using the back propagation neural network model to train, the intensive land use level of each evaluation unit is finally determined in the study area. Results show that the method can effectively correct the errors caused by the limitations of the model itself and the determination of the ideal value and weights when the multifactor comprehensive evaluation is used alone. The ANN model can make the evaluation results more objective and practical. The evaluation results show a tendency of decreasing land use intensity from the core urban area to the periphery and the industrial functional area has relatively low land use intensity compared with other functional areas. Based on the evaluation results, some suggestions are put forward, such as transforming the mode of urban spatial expansion, strengthening the integration and potential exploitation of the land in the urban built-up area, and strengthening the control of the construction intensity of protected areas.展开更多
In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integr...In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design.展开更多
The factors of geomorphology, geological setting, effect of ground water and environment dynamic factors (e.g. rainfall and artificial water recharge) should be integrated in the discrimination of the stability of the...The factors of geomorphology, geological setting, effect of ground water and environment dynamic factors (e.g. rainfall and artificial water recharge) should be integrated in the discrimination of the stability of the ancient landslide. As the criterion of landslide stability has been studied, the artificial neural network model was then applied to discriminate the stability of the ancient landslide in the impounding area of the Three Gorges project on the Yangtze River, China. The model has the property of self adaptive identifying and integrating complex qualitative factors and quantitative factors. The results of the artificial neural network model are coincided well with what were gained by classical limit equilibrium analysis (the Bishop method and Janbu method) and by other comprehensive discrimination methods.展开更多
Data from the deformation on Split Hopkinson Bar were used for constructing an artificial neural network model. When putting the thermodynamic parameters of the metals into the trained network model, the corresponding...Data from the deformation on Split Hopkinson Bar were used for constructing an artificial neural network model. When putting the thermodynamic parameters of the metals into the trained network model, the corresponding yielding stress can be predicted. The results show that the systematic error is small when the objective function is 0.5 , the number of the nodes in the hidden layer is 6 and the learning rate is about 0.1 , and the accuracy of the rate error is less than 3%. [展开更多
Objective To develop a new antimicrobial sensitivity test model for oral products in vitro.Methods A biofilm artificial mouth model for antimicrobial sensitivity tests was established by modifying the LKB chromatograp...Objective To develop a new antimicrobial sensitivity test model for oral products in vitro.Methods A biofilm artificial mouth model for antimicrobial sensitivity tests was established by modifying the LKB chromatography chamber. Using sodium fluoride and Tea polyphenol as antimicrobial agent and Streptococcus mu-tans as target, sensitivity tests were studied. Results The modeling biofilm assay resulted in a MIC of 1. 28mg/ ml for fluoride against S. mutans, which was 32 times the MIC for broth maco-dilution method. The differential resistance of bacteria bioflim to antimicrobial agent relative to planktonic cells was also demonstrated. Conclusion The biofilm artificial mouth model may be useful in oral products test.展开更多
On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Mal...On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Malian-River basin. The results by calculating show that the solution based on BP algorithms are consis- tent with those based multiple - variables linear regression model. They also indicate that BP model in this paper is reasonable and BP algorithms are feasible.展开更多
The hydrodynamic forces and flow field of artificial reef models in steady flow were numerically investigated using the RNG κ-ε turbulent model. The numerical simulation results are consistent with results observed ...The hydrodynamic forces and flow field of artificial reef models in steady flow were numerically investigated using the RNG κ-ε turbulent model. The numerical simulation results are consistent with results observed by experimental means. A comparative study indicates that the corresponding errors of forces between calculated values and values observed in the experiment vary in the range of2.3%-11.2% and that the corresponding errors of velocities vary in the range of 1.3%-15.8%. The flow field numerical results show that upstream and vortices exist when the current passes over and through the surface of the reef model. This study suggests that the numerical simulation method can be applied to predict the forces and flow field associated with artificial reefs.展开更多
This article reports a particle image velocimetry study and the comparative results of a numerical simulation into the hydrodynamic characteristics around an artificial reef.We reveal the process of flow separation an...This article reports a particle image velocimetry study and the comparative results of a numerical simulation into the hydrodynamic characteristics around an artificial reef.We reveal the process of flow separation and vortex evolution,and compare the force terms generated by our artificial reef model.The numerical simulation agrees well with experimental results,showing the applicability of computational fluid dynamics to the hydrodynamics of an artificial reef.Furthermore,we numerically simulate the hydrodynamics of the reef model for seven velocities.The results show that the drag coefficient is approximately 1.21 in a self-modeling region for Reynolds numbers between 2.123×104and 9×104.Therefore,the upwelling height and current width of the flow field do not change significantly when the inflow velocity increases.Our study indicates that computational fluid dynamics can be applied to study the hydrodynamics of an artificial reef and offer clues to its construction.展开更多
The hot deformation behavior of Al?6.2Zn?0.70Mg?0.30Mn?0.17Zr alloy was investigated by isothermal compressiontest on a Gleeble?3500machine in the deformation temperature range between623and773K and the strain rate ra...The hot deformation behavior of Al?6.2Zn?0.70Mg?0.30Mn?0.17Zr alloy was investigated by isothermal compressiontest on a Gleeble?3500machine in the deformation temperature range between623and773K and the strain rate range between0.01and20s?1.The results show that the flow stress decreases with decreasing strain rate and increasing deformation temperature.Basedon the experimental results,Arrhenius constitutive equations and artificial neural network(ANN)model were established toinvestigate the flow behavior of the alloy.The calculated results show that the influence of strain on material constants can berepresented by a6th-order polynomial function.The ANN model with16neurons in hidden layer possesses perfect performanceprediction of the flow stress.The predictabilities of the two established models are different.The errors of results calculated by ANNmodel were more centralized and the mean absolute error corresponding to Arrhenius constitutive equations and ANN model are3.49%and1.03%,respectively.In predicting the flow stress of experimental aluminum alloy,the ANN model has a betterpredictability and greater efficiency than Arrhenius constitutive equations.展开更多
This paper presents the application of autoregressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA), and Jordan-Elman artificial neural networks (ANN) models in forecasting the monthly streamflow of...This paper presents the application of autoregressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA), and Jordan-Elman artificial neural networks (ANN) models in forecasting the monthly streamflow of the Kizil River in Xinjiang, China. Two different types of monthly streamflow data (original and deseasonalized data) were used to develop time series and Jordan-Elman ANN models using previous flow conditions as predictors. The one-month-ahead forecasting performances of all models for the testing period (1998-2005) were compared using the average monthly flow data from the Kalabeili gaging station on the Kizil River. The Jordan-Elman ANN models, using previous flow conditions as inputs, resulted in no significant improvement over time series models in one-month-ahead forecasting. The results suggest that the simple time series models (ARIMA and SARIMA) can be used in one-month-ahead streamflow forecasting at the study site with a simple and explicit model structure and a model performance similar to the Jordan-Elman ANN models.展开更多
Landslide hazard is as the probability of occurrence of a potentially damaging landslide phenomenon within specified period of time and within a given area. The susceptibility map provides the relative spatial probabi...Landslide hazard is as the probability of occurrence of a potentially damaging landslide phenomenon within specified period of time and within a given area. The susceptibility map provides the relative spatial probability of landslides occurrence. A study is presented of the application of GIS and artificial neural network model to landslide susceptibility mapping, with particular reference to landslides on natural terrain in this paper. The method has been applied to Lantau Island, the largest outlying island within the territory of Hong Kong. A three-level neural network model was constructed and trained by the back-propagate algorithm in the geographical database of the study area. The data in the database includes digital elevation modal and its derivatives, landslides distribution and their attributes, superficial geological maps, vegetation cover, the raingauges distribution and their 14 years 5-minute observation. Based on field inspection and analysis of correlation between terrain variables and landslides frequency, lithology, vegetation cover, slope gradient, slope aspect, slope curvature, elevation, the characteristic value, the rainstorms corresponding to the landslide, and distance to drainage Une are considered to be related to landslide susceptibility in this study. The artificial neural network is then coupled with the ArcView3.2 GIS software to produce the landslide susceptibility map, which classifies the susceptibility into three levels: low, moderate, and high. The results from this study indicate that GIS coupled with artificial neural network model is a flexible and powerful approach to identify the spatial probability of hazards.展开更多
In this article,we present an application of Adaptive Genetic Algorithm Energy Demand Estimation(AGAEDE) optimal model to improve the efficiency of energy demand prediction.The coefficients of the two forms of the mod...In this article,we present an application of Adaptive Genetic Algorithm Energy Demand Estimation(AGAEDE) optimal model to improve the efficiency of energy demand prediction.The coefficients of the two forms of the model(both linear and quadratic) are optimized by AGA using factors,such as GDP,population,urbanization rate,and R&D inputs together with energy consumption structure,that affect demand.Since the spurious regression phenomenon occurs for a wide range of time series analysis in econometrics,we also discuss this problem for the current artificial intelligence model.The simulation results show that the proposed model is more accurate and reliable compared with other existing methods and the China's energy demand will be 5.23 billion TCE in 2020 according to the average results of the AGAEDE optimal model.Further discussion illustrates that there will be great pressure for China to fulfill the planned goal of controlling energy demand set in the National Energy Demand Project(2014—2020).展开更多
Hyperstatic structure plane model being built by structural mechanics is studied. Space model precisely reflected in real stress of the structure is built by finite element method (FEM) analysis commerce software. M...Hyperstatic structure plane model being built by structural mechanics is studied. Space model precisely reflected in real stress of the structure is built by finite element method (FEM) analysis commerce software. Mapping model of complex structure system is set up, with convenient calculation just as in plane model and comprehensive information as in space model. Plane model and space model are calculated under the same working condition. Plane model modular construction inner force is considered as input data; Space model modular construction inner force is considered as output data. Thus specimen is built on input data and output dam. Character and affiliation are extracted through training specimen, with the employment of nonlinear mapping capability of the artificial neural network. Mapping model with interpolation and extrpolation is gained, laying the foundation for optimum design. The steel structure of high-layer parking system (SSHLPS) is calculated as an instance. A three-layer back-propagation (BP) net including one hidden layer is constructed with nine input nodes and eight output nodes for a five-layer SSHLPS. The three-layer structure optimization result through the mapping model interpolation contrasts with integrity re-analysis, and seven layers structure through the mapping model extrpulation contrasts with integrity re-analysis. Any layer SSHLPS among 1-8 can be calculated with much accuracy. Amount of calculation can also be reduced if it is appfied into the same topological structure, with reduced distortion and assured precision.展开更多
Hepatocellular carcinoma(HCC)is one major cause of cancer-related mortality around the world.However,at advanced stages of HCC,systematic treatment options are currently limited.As a result,new pharmacological targets...Hepatocellular carcinoma(HCC)is one major cause of cancer-related mortality around the world.However,at advanced stages of HCC,systematic treatment options are currently limited.As a result,new pharmacological targetsmust be discovered regularly,and then tailored medicines against HCC must be developed.In this research,we used biomarkers of HCC to collect the protein interaction network related to HCC.Initially,DC(Degree Centrality)was employed to assess the importance of each protein.Then an improved Graph Coloring algorithm was used to rank the target proteins according to the interaction with the primary target protein after assessing the top ranked proteins related to HCC.Finally,physio-chemical proteins are used to evaluate the outcome of the top ranked proteins.The proposed graph theory and machine learning techniques have been compared with six existing methods.In the proposed approach,16 proteins have been identified as potential therapeutic drug targets for Hepatic Carcinoma.It is observable that the proposed method gives remarkable performance than the existing centrality measures in terms of Accuracy,Precision,Recall,Sensitivity,Specificity and F-measure.展开更多
Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur...Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur content of hydrogenated residual oil. The established ANN model covered 4 input variables, 1 output variable and 1 hidden layer with 15 neurons. The comparison between the results of two models was listed. The results showed that the predicted mean relative errors of the two models with three different sample data were less than 5% and both the two models had good predictive precision and extrapolative feature for the HDS process. The mean relative error of 5 sets of testing data of the ANN model was 1.62%—3.23%, all of which were smaller than that of the common mechanism model (3.47%— 4.13%). It showed that the ANN model was better than the mechanism model both in terms of fitting results and fitting difficulty. The models could be easily applied in practice and could also provide a reference for the further research of residual oil HDS process.展开更多
基金supported by JSPS KAKENHI(grant number:21K04307).
文摘Various transportation systems have been developed in recent years.In this study,an artificial society model is developed to examine the combination of transportation policies in urban areas.In this model,each trip maker selects the primary and terminal transportation modes.An artificial society model is applied to the southeastern region of Osaka City,Japan.The effects of introducing BRT(bus rapid transit,primary transportation)and on-demand buses(terminal transportation)are investigated.The results confirm that BRT is used by a certain number of users.An increase in the use of BRT will increase the amount of walking,thus resulting in a healthy city.However,on-demand buses are rarely used as terminal transportation.Additionally,the development of bicycle parking stations near BRT stops is shown to be effective in the northern section of the BRT route.
文摘Artificial intelligence(AI)is making significant strides in revolutionizing the detection of Barrett's esophagus(BE),a precursor to esophageal adenocarcinoma.In the research article by Tsai et al,researchers utilized endoscopic images to train an AI model,challenging the traditional distinction between endoscopic and histological BE.This approach yielded remarkable results,with the AI system achieving an accuracy of 94.37%,sensitivity of 94.29%,and specificity of 94.44%.The study's extensive dataset enhances the AI model's practicality,offering valuable support to endoscopists by minimizing unnecessary biopsies.However,questions about the applicability to different endoscopic systems remain.The study underscores the potential of AI in BE detection while highlighting the need for further research to assess its adaptability to diverse clinical settings.
基金Project(2006AA04Z201) supported by the National High-Tech Research and Development Program of China
文摘According to the basic emotional theory, the artificial emotional model based on the finite state machine(FSM) was presented. In finite state machine model of emotion, the emotional space included the basic emotional space and the multiple emotional spaces. The emotion-switching diagram was defined and transition fimction was developed using Markov chain and linear interpolation algorithm. The simulation model was built using Stateflow toolbox and Simulink toolbox based on the Matlab platform. And the model included three subsystems: the input one, the emotion one and the behavior one. In the emotional subsystem, the responses of different personalities to the external stimuli were described by defining personal space. This model takes states from an emotional space and updates its state depending on its current state and a state of its input (also a state-emotion). The simulation model realizes the process of switching the emotion from the neutral state to other basic emotions. The simulation result is proved to correspond to emotion-switching law of human beings.
基金Funding from The Scientific and Technological Research Council of Turkey(Project No:2130026)is gratefully acknowledged
文摘Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.
基金Project supported by the National Natural Science Foundation of China(Nos.91441117 and 51576182)
文摘A sub-grid scale(SGS) combustion model, which combines the artificial thickened flame(ATF) model with the flamelet generated manifold(FGM) tabulation method, is proposed. Based on the analysis of laminar flame structures, two self-contained flame sensors are used to track the diffusion and reaction processes with different spatial scales in the flame front, respectively. The dynamic formulation for the proposed SGS combustion model is also performed. Large eddy simulations(LESs) of Bunsen flame F3 are used to evaluate the different SGS combustion models. The results show that the proposed SGS model has the ability in predicting the distributions of temperature and velocity reasonably, while the predictions for the distributions of some species need further improvement. The snapshots of instantaneous normalized progress variables reveal that the flame is more remarkably and severely wrinkled at the flame tip for flame F3.More satisfactory results obtained by the dynamic model indicate that it can preserve the premixed flame propagation characteristics better.
基金Under the auspices of Special Financial Grant and General Financial Grant from the China Postdoctoral Science Foundation(No.2015T80127,2014M561040)National Natural Science Foundation of China(No.41371172,41401171,41471143)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.164320H101)
文摘In this paper, the artificial neural network(ANN) model was used to evaluate the degree of intensive urban land use in Nanjing City, China. The construction and application of the ANN model took into account the comprehensive, spatial and complex nature of urban land use. Through a preliminary calculation of the degree of intensive land use of the sample area, representative sample area selection and using the back propagation neural network model to train, the intensive land use level of each evaluation unit is finally determined in the study area. Results show that the method can effectively correct the errors caused by the limitations of the model itself and the determination of the ideal value and weights when the multifactor comprehensive evaluation is used alone. The ANN model can make the evaluation results more objective and practical. The evaluation results show a tendency of decreasing land use intensity from the core urban area to the periphery and the industrial functional area has relatively low land use intensity compared with other functional areas. Based on the evaluation results, some suggestions are put forward, such as transforming the mode of urban spatial expansion, strengthening the integration and potential exploitation of the land in the urban built-up area, and strengthening the control of the construction intensity of protected areas.
基金the management of Sierra Rutile Company for providing the drillhole dataset used in this studythe Japanese Ministry of Education Science and Technology (MEXT) Scholarship for academic funding
文摘In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design.
文摘The factors of geomorphology, geological setting, effect of ground water and environment dynamic factors (e.g. rainfall and artificial water recharge) should be integrated in the discrimination of the stability of the ancient landslide. As the criterion of landslide stability has been studied, the artificial neural network model was then applied to discriminate the stability of the ancient landslide in the impounding area of the Three Gorges project on the Yangtze River, China. The model has the property of self adaptive identifying and integrating complex qualitative factors and quantitative factors. The results of the artificial neural network model are coincided well with what were gained by classical limit equilibrium analysis (the Bishop method and Janbu method) and by other comprehensive discrimination methods.
文摘Data from the deformation on Split Hopkinson Bar were used for constructing an artificial neural network model. When putting the thermodynamic parameters of the metals into the trained network model, the corresponding yielding stress can be predicted. The results show that the systematic error is small when the objective function is 0.5 , the number of the nodes in the hidden layer is 6 and the learning rate is about 0.1 , and the accuracy of the rate error is less than 3%. [
文摘Objective To develop a new antimicrobial sensitivity test model for oral products in vitro.Methods A biofilm artificial mouth model for antimicrobial sensitivity tests was established by modifying the LKB chromatography chamber. Using sodium fluoride and Tea polyphenol as antimicrobial agent and Streptococcus mu-tans as target, sensitivity tests were studied. Results The modeling biofilm assay resulted in a MIC of 1. 28mg/ ml for fluoride against S. mutans, which was 32 times the MIC for broth maco-dilution method. The differential resistance of bacteria bioflim to antimicrobial agent relative to planktonic cells was also demonstrated. Conclusion The biofilm artificial mouth model may be useful in oral products test.
基金Supported by Brilliant Youth Fund in Hebei Province
文摘On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Malian-River basin. The results by calculating show that the solution based on BP algorithms are consis- tent with those based multiple - variables linear regression model. They also indicate that BP model in this paper is reasonable and BP algorithms are feasible.
基金Supported by the National High Technology Research and Development Program of China(863 Programs)(No.2006AA100301)Science and Technology Development Program of Shandong Province(No.2005GG3205102)
文摘The hydrodynamic forces and flow field of artificial reef models in steady flow were numerically investigated using the RNG κ-ε turbulent model. The numerical simulation results are consistent with results observed by experimental means. A comparative study indicates that the corresponding errors of forces between calculated values and values observed in the experiment vary in the range of2.3%-11.2% and that the corresponding errors of velocities vary in the range of 1.3%-15.8%. The flow field numerical results show that upstream and vortices exist when the current passes over and through the surface of the reef model. This study suggests that the numerical simulation method can be applied to predict the forces and flow field associated with artificial reefs.
基金Supported by the National Natural Science Foundation of China(Nos.31072246,31272703)
文摘This article reports a particle image velocimetry study and the comparative results of a numerical simulation into the hydrodynamic characteristics around an artificial reef.We reveal the process of flow separation and vortex evolution,and compare the force terms generated by our artificial reef model.The numerical simulation agrees well with experimental results,showing the applicability of computational fluid dynamics to the hydrodynamics of an artificial reef.Furthermore,we numerically simulate the hydrodynamics of the reef model for seven velocities.The results show that the drag coefficient is approximately 1.21 in a self-modeling region for Reynolds numbers between 2.123×104and 9×104.Therefore,the upwelling height and current width of the flow field do not change significantly when the inflow velocity increases.Our study indicates that computational fluid dynamics can be applied to study the hydrodynamics of an artificial reef and offer clues to its construction.
基金Project(2016GK1004) supported by the Science and Technology Major Project of Hunan Province,China
文摘The hot deformation behavior of Al?6.2Zn?0.70Mg?0.30Mn?0.17Zr alloy was investigated by isothermal compressiontest on a Gleeble?3500machine in the deformation temperature range between623and773K and the strain rate range between0.01and20s?1.The results show that the flow stress decreases with decreasing strain rate and increasing deformation temperature.Basedon the experimental results,Arrhenius constitutive equations and artificial neural network(ANN)model were established toinvestigate the flow behavior of the alloy.The calculated results show that the influence of strain on material constants can berepresented by a6th-order polynomial function.The ANN model with16neurons in hidden layer possesses perfect performanceprediction of the flow stress.The predictabilities of the two established models are different.The errors of results calculated by ANNmodel were more centralized and the mean absolute error corresponding to Arrhenius constitutive equations and ANN model are3.49%and1.03%,respectively.In predicting the flow stress of experimental aluminum alloy,the ANN model has a betterpredictability and greater efficiency than Arrhenius constitutive equations.
文摘This paper presents the application of autoregressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA), and Jordan-Elman artificial neural networks (ANN) models in forecasting the monthly streamflow of the Kizil River in Xinjiang, China. Two different types of monthly streamflow data (original and deseasonalized data) were used to develop time series and Jordan-Elman ANN models using previous flow conditions as predictors. The one-month-ahead forecasting performances of all models for the testing period (1998-2005) were compared using the average monthly flow data from the Kalabeili gaging station on the Kizil River. The Jordan-Elman ANN models, using previous flow conditions as inputs, resulted in no significant improvement over time series models in one-month-ahead forecasting. The results suggest that the simple time series models (ARIMA and SARIMA) can be used in one-month-ahead streamflow forecasting at the study site with a simple and explicit model structure and a model performance similar to the Jordan-Elman ANN models.
基金National Natural Science Foundation of China, No.49971066.
文摘Landslide hazard is as the probability of occurrence of a potentially damaging landslide phenomenon within specified period of time and within a given area. The susceptibility map provides the relative spatial probability of landslides occurrence. A study is presented of the application of GIS and artificial neural network model to landslide susceptibility mapping, with particular reference to landslides on natural terrain in this paper. The method has been applied to Lantau Island, the largest outlying island within the territory of Hong Kong. A three-level neural network model was constructed and trained by the back-propagate algorithm in the geographical database of the study area. The data in the database includes digital elevation modal and its derivatives, landslides distribution and their attributes, superficial geological maps, vegetation cover, the raingauges distribution and their 14 years 5-minute observation. Based on field inspection and analysis of correlation between terrain variables and landslides frequency, lithology, vegetation cover, slope gradient, slope aspect, slope curvature, elevation, the characteristic value, the rainstorms corresponding to the landslide, and distance to drainage Une are considered to be related to landslide susceptibility in this study. The artificial neural network is then coupled with the ArcView3.2 GIS software to produce the landslide susceptibility map, which classifies the susceptibility into three levels: low, moderate, and high. The results from this study indicate that GIS coupled with artificial neural network model is a flexible and powerful approach to identify the spatial probability of hazards.
基金supported by the Fundamental Research Funds for the Central Universities[Grant No.JBK1507159]
文摘In this article,we present an application of Adaptive Genetic Algorithm Energy Demand Estimation(AGAEDE) optimal model to improve the efficiency of energy demand prediction.The coefficients of the two forms of the model(both linear and quadratic) are optimized by AGA using factors,such as GDP,population,urbanization rate,and R&D inputs together with energy consumption structure,that affect demand.Since the spurious regression phenomenon occurs for a wide range of time series analysis in econometrics,we also discuss this problem for the current artificial intelligence model.The simulation results show that the proposed model is more accurate and reliable compared with other existing methods and the China's energy demand will be 5.23 billion TCE in 2020 according to the average results of the AGAEDE optimal model.Further discussion illustrates that there will be great pressure for China to fulfill the planned goal of controlling energy demand set in the National Energy Demand Project(2014—2020).
基金This project is supported by Provincial Natural Science Foundation of Shanxi, China (No. 20041074)Provincial Natural Science Youth Foundation of Shanxi, China (No. 20051030)Provincial Education Office Key Subject of Shanxi, China (No. 20045027-20045028)
文摘Hyperstatic structure plane model being built by structural mechanics is studied. Space model precisely reflected in real stress of the structure is built by finite element method (FEM) analysis commerce software. Mapping model of complex structure system is set up, with convenient calculation just as in plane model and comprehensive information as in space model. Plane model and space model are calculated under the same working condition. Plane model modular construction inner force is considered as input data; Space model modular construction inner force is considered as output data. Thus specimen is built on input data and output dam. Character and affiliation are extracted through training specimen, with the employment of nonlinear mapping capability of the artificial neural network. Mapping model with interpolation and extrpolation is gained, laying the foundation for optimum design. The steel structure of high-layer parking system (SSHLPS) is calculated as an instance. A three-layer back-propagation (BP) net including one hidden layer is constructed with nine input nodes and eight output nodes for a five-layer SSHLPS. The three-layer structure optimization result through the mapping model interpolation contrasts with integrity re-analysis, and seven layers structure through the mapping model extrpulation contrasts with integrity re-analysis. Any layer SSHLPS among 1-8 can be calculated with much accuracy. Amount of calculation can also be reduced if it is appfied into the same topological structure, with reduced distortion and assured precision.
基金supported by Taif University with Research Grant(TURSP-2020/77).
文摘Hepatocellular carcinoma(HCC)is one major cause of cancer-related mortality around the world.However,at advanced stages of HCC,systematic treatment options are currently limited.As a result,new pharmacological targetsmust be discovered regularly,and then tailored medicines against HCC must be developed.In this research,we used biomarkers of HCC to collect the protein interaction network related to HCC.Initially,DC(Degree Centrality)was employed to assess the importance of each protein.Then an improved Graph Coloring algorithm was used to rank the target proteins according to the interaction with the primary target protein after assessing the top ranked proteins related to HCC.Finally,physio-chemical proteins are used to evaluate the outcome of the top ranked proteins.The proposed graph theory and machine learning techniques have been compared with six existing methods.In the proposed approach,16 proteins have been identified as potential therapeutic drug targets for Hepatic Carcinoma.It is observable that the proposed method gives remarkable performance than the existing centrality measures in terms of Accuracy,Precision,Recall,Sensitivity,Specificity and F-measure.
文摘Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur content of hydrogenated residual oil. The established ANN model covered 4 input variables, 1 output variable and 1 hidden layer with 15 neurons. The comparison between the results of two models was listed. The results showed that the predicted mean relative errors of the two models with three different sample data were less than 5% and both the two models had good predictive precision and extrapolative feature for the HDS process. The mean relative error of 5 sets of testing data of the ANN model was 1.62%—3.23%, all of which were smaller than that of the common mechanism model (3.47%— 4.13%). It showed that the ANN model was better than the mechanism model both in terms of fitting results and fitting difficulty. The models could be easily applied in practice and could also provide a reference for the further research of residual oil HDS process.