Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantage...Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantages,convertingthe external analog signals to spikes is an essential prerequisite.Conventionalapproaches including analog-to-digital converters or ring oscillators,and sensorssuffer from high power and area costs.Recent efforts are devoted to constructingartificial sensory neurons based on emerging devices inspired by the biologicalsensory system.They can simultaneously perform sensing and spike conversion,overcoming the deficiencies of traditional sensory systems.This review summarizesand benchmarks the recent progress of artificial sensory neurons.It starts with thepresentation of various mechanisms of biological signal transduction,followed bythe systematic introduction of the emerging devices employed for artificial sensoryneurons.Furthermore,the implementations with different perceptual capabilitiesare briefly outlined and the key metrics and potential applications are also provided.Finally,we highlight the challenges and perspectives for the future development of artificial sensory neurons.展开更多
The brain,with its trillions of neural connections,different cellular types,and molecular complexities,presents a formidable challenge for researchers aiming to comprehend the multifaceted nature of neural health.As t...The brain,with its trillions of neural connections,different cellular types,and molecular complexities,presents a formidable challenge for researchers aiming to comprehend the multifaceted nature of neural health.As traditional methods have provided valuable insights,emerging technologies offer unprecedented opportunities to delve deeper into the underpinnings of brain function.In the everevolving landscape of neuroscience,the quest to unravel the mysteries of the human brain is bound to take a leap forward thanks to new technological improvements and bold interpretative frameworks.展开更多
The use of traditional herbal drugs derived from natural sources is on the rise due to their minimal side effects and numerous health benefits.However,a major limitation is the lack of standardized knowledge for ident...The use of traditional herbal drugs derived from natural sources is on the rise due to their minimal side effects and numerous health benefits.However,a major limitation is the lack of standardized knowledge for identifying and mapping the quality of these herbal medicines.This article aims to provide practical insights into the application of artificial intelligence for quality-based commercialization of raw herbal drugs.It focuses on feature extraction methods,image processing techniques,and the preparation of herbal images for compatibility with machine learning models.The article discusses commonly used image processing tools such as normalization,slicing,cropping,and augmentation to prepare images for artificial intelligence-based models.It also provides an overview of global herbal image databases and the models employed for herbal plant/drug identification.Readers will gain a comprehensive understanding of the potential application of various machine learning models,including artificial neural networks and convolutional neural networks.The article delves into suitable validation parameters like true positive rates,accuracy,precision,and more for the development of artificial intelligence-based identification and authentication techniques for herbal drugs.This article offers valuable insights and a conclusive platform for the further exploration of artificial intelligence in the field of herbal drugs,paving the way for smarter identification and authentication methods.展开更多
This editorial explores the transformative potential of artificial intelligence(AI)in identifying conflicts of interest(COIs)within academic and scientific research.By harnessing advanced data analysis,pattern recogni...This editorial explores the transformative potential of artificial intelligence(AI)in identifying conflicts of interest(COIs)within academic and scientific research.By harnessing advanced data analysis,pattern recognition,and natural language processing techniques,AI offers innovative solutions for enhancing transparency and integrity in research.This editorial discusses how AI can automatically detect COIs,integrate data from various sources,and streamline reporting processes,thereby maintaining the credibility of scientific findings.展开更多
With the rapid development of artificial intelligence(AI)technology,the demand for high-performance and energyefficient computing is increasingly growing.The limitations of the traditional von Neumann computing archit...With the rapid development of artificial intelligence(AI)technology,the demand for high-performance and energyefficient computing is increasingly growing.The limitations of the traditional von Neumann computing architecture have prompted researchers to explore neuromorphic computing as a solution.Neuromorphic computing mimics the working principles of the human brain,characterized by high efficiency,low energy consumption,and strong fault tolerance,providing a hardware foundation for the development of new generation AI technology.Artificial neurons and synapses are the two core components of neuromorphic computing systems.Artificial perception is a crucial aspect of neuromorphic computing,where artificial sensory neurons play an irreplaceable role thus becoming a frontier and hot topic of research.This work reviews recent advances in artificial sensory neurons and their applications.First,biological sensory neurons are briefly described.Then,different types of artificial neurons,such as transistor neurons and memristive neurons,are discussed in detail,focusing on their device structures and working mechanisms.Next,the research progress of artificial sensory neurons and their applications in artificial perception systems is systematically elaborated,covering various sensory types,including vision,touch,hearing,taste,and smell.Finally,challenges faced by artificial sensory neurons at both device and system levels are summarized.展开更多
BACKGROUND Recent advancements in artificial intelligence(AI)have significantly enhanced the capabilities of endoscopic-assisted diagnosis for gastrointestinal diseases.AI has shown great promise in clinical practice,...BACKGROUND Recent advancements in artificial intelligence(AI)have significantly enhanced the capabilities of endoscopic-assisted diagnosis for gastrointestinal diseases.AI has shown great promise in clinical practice,particularly for diagnostic support,offering real-time insights into complex conditions such as esophageal squamous cell carcinoma.CASE SUMMARY In this study,we introduce a multimodal AI system that successfully identified and delineated a small and flat carcinoma during esophagogastroduodenoscopy,highlighting its potential for early detection of malignancies.The lesion was confirmed as high-grade squamous intraepithelial neoplasia,with pathology results supporting the AI system’s accuracy.The multimodal AI system offers an integrated solution that provides real-time,accurate diagnostic information directly within the endoscopic device interface,allowing for single-monitor use without disrupting endoscopist’s workflow.CONCLUSION This work underscores the transformative potential of AI to enhance endoscopic diagnosis by enabling earlier,more accurate interventions.展开更多
Organic electrochemical transistors have emerged as a solution for artificial synapses that mimic the neural functions of the brain structure,holding great potentials to break the bottleneck of von Neumann architectur...Organic electrochemical transistors have emerged as a solution for artificial synapses that mimic the neural functions of the brain structure,holding great potentials to break the bottleneck of von Neumann architectures.However,current artificial synapses rely primarily on electrical signals,and little attention has been paid to the vital role of neurotransmitter-mediated artificial synapses.Dopamine is a key neurotransmitter associated with emotion regulation and cognitive processes that needs to be monitored in real time to advance the development of disease diagnostics and neuroscience.To provide insights into the development of artificial synapses with neurotransmitter involvement,this review proposes three steps towards future biomimic and bioinspired neuromorphic systems.We first summarize OECT-based dopamine detection devices,and then review advances in neurotransmitter-mediated artificial synapses and resultant advanced neuromorphic systems.Finally,by exploring the challenges and opportunities related to such neuromorphic systems,we provide a perspective on the future development of biomimetic and bioinspired neuromorphic systems.展开更多
In this editorial,we discuss the article by Singh et al published in World Journal of Nephrology,stating the need for timely adjustments in inflammatory bowel disease(IBD)patients'long-term management plans.IBD is...In this editorial,we discuss the article by Singh et al published in World Journal of Nephrology,stating the need for timely adjustments in inflammatory bowel disease(IBD)patients'long-term management plans.IBD is chronic and lifelong,with recurrence and remission cycles,including ulcerative colitis and Crohn's disease.It's exact etiology is unknown but likely multifactorial.Related to gut flora and immune issues.Besides intestinal symptoms,IBD can also affect various extrain-testinal manifestations such as those involving the skin,joints,eyes and urinary system.The anatomical proximity of urinary system waste disposal to that of the alimentary canal makes early detection and the differentiation of such symptoms very difficult.Various studies show that IBD and it's first-line drugs have nephro-toxicity,impacting the patients'life quality.Existing guidelines give very few references for kidney lesion monitoring.Singh et al's plan aims to improve treatment management for IBD patients with glomerular filtration rate decline,specifically those at risk.Most of IBD patients are young and they need lifelong therapy.So early therapy cessation,taking into account drug side effects,can be helpful.Artificial intelligence-driven diagnosis and treatment has a big potential for management improvements in IBD and other chronic diseases.展开更多
The integration of artificial intelligence(AI)and multiomics has transformed clinical and life sciences,enabling precision medicine and redefining disease understanding.Scientific publications grew significantly from ...The integration of artificial intelligence(AI)and multiomics has transformed clinical and life sciences,enabling precision medicine and redefining disease understanding.Scientific publications grew significantly from 2.1 million in 2012 to 3.3 million in 2022,with AI research tripling during this period.Multiomics fields,including genomics and proteomics,also advanced,exemplified by the Human Proteome Project achieving a 90%complete blueprint by 2021.This growth highlights opportunities and challenges in integrating AI and multiomics into clinical reporting.A review of studies and case reports was conducted to evaluate AI and multiomics integration.Key areas analyzed included diagnostic accuracy,predictive modeling,and personalized treatment approaches driven by AI tools.Case examples were studied to assess impacts on clinical decision-making.AI and multiomics enhanced data integration,predictive insights,and treatment personalization.Fields like radiomics,genomics,and proteomics improved diagnostics and guided therapy.For instance,the“AI radiomics,geno-mics,oncopathomics,and surgomics project”combined radiomics and genomics for surgical decision-making,enabling preoperative,intraoperative,and post-operative interventions.AI applications in case reports predicted conditions like postoperative delirium and monitored cancer progression using genomic and imaging data.AI and multiomics enable standardized data analysis,dynamic updates,and predictive modeling in case reports.Traditional reports often lack objectivity,but AI enhances reproducibility and decision-making by processing large datasets.Challenges include data standardization,biases,and ethical concerns.Overcoming these barriers is vital for optimizing AI applications and advancing personalized medicine.AI and multiomics integration is revolutionizing clinical research and practice.Standardizing data reporting and addressing challenges in ethics and data quality will unlock their full potential.Emphasizing collaboration and transparency is essential for leveraging these tools to improve patient care and scientific communication.展开更多
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an...Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences.展开更多
Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of ...Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of physics in climate science has occasionally been overlooked.Our perspective suggests that the future of climate modeling involves a synergistic partnership between AI and physics,rather than an“either/or”scenario.Scrutinizing controversies around current physical inconsistencies in large AI models,we stress the critical need for detailed dynamic diagnostics and physical constraints.Furthermore,we provide illustrative examples to guide future assessments and constraints for AI models.Regarding AI integration with numerical models,we argue that offline AI parameterization schemes may fall short of achieving global optimality,emphasizing the importance of constructing online schemes.Additionally,we highlight the significance of fostering a community culture and propose the OCR(Open,Comparable,Reproducible)principles.Through a better community culture and a deep integration of physics and AI,we contend that developing a learnable climate model,balancing AI and physics,is an achievable goal.展开更多
Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on p...Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms.To investigate advances in the use of artificial intelligence in the diagnosis,rehabilitation,and scientific examination of peripheral nerve injury,we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023.We identified the following research hotspots in peripheral nerve injury and repair:(1)diagnosis,classification,and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques,such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy;(2)motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms,such as wearable devices and assisted wheelchair systems;(3)improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning,such as implantable peripheral nerve interfaces;(4)the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility,enabling them to control devices such as networked hand prostheses;(5)artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation,thereby reducing surgical risk and complications,and facilitating postoperative recovery.Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair,there are some limitations to this technology,such as the consequences of missing or imbalanced data,low data accuracy and reproducibility,and ethical issues(e.g.,privacy,data security,research transparency).Future research should address the issue of data collection,as large-scale,high-quality clinical datasets are required to establish effective artificial intelligence models.Multimodal data processing is also necessary,along with interdisciplinary collaboration,medical-industrial integration,and multicenter,large-sample clinical studies.展开更多
Background: The growth and use of Artificial Intelligence (AI) in the medical field is rapidly rising. AI is exhibiting a practical tool in the healthcare industry in patient care. The objective of this current review...Background: The growth and use of Artificial Intelligence (AI) in the medical field is rapidly rising. AI is exhibiting a practical tool in the healthcare industry in patient care. The objective of this current review is to assess and analyze the use of AI and its use in orthopedic practice, as well as its applications, limitations, and pitfalls. Methods: A review of all relevant databases such as EMBASE, Cochrane Database of Systematic Reviews, MEDLINE, Science Citation Index, Scopus, and Web of Science with keywords of AI, orthopedic surgery, applications, and drawbacks. All related articles on AI and orthopaedic practice were reviewed. A total of 3210 articles were included in the review. Results: The data from 351 studies were analyzed where in orthopedic surgery. AI is being used for diagnostic procedures, radiological diagnosis, models of clinical care, and utilization of hospital and bed resources. AI has also taken a chunk of share in assisted robotic orthopaedic surgery. Conclusions: AI has now become part of the orthopedic practice and will further increase its stake in the healthcare industry. Nonetheless, clinicians should remain aware of AI’s serious limitations and pitfalls and consider the drawbacks and errors in its use.展开更多
Artificial intelligence(AI)technology has been increasingly used in medical field with its rapid developments.Echocardiography is one of the best imaging methods for clinical diagnosis of heart diseases,and combining ...Artificial intelligence(AI)technology has been increasingly used in medical field with its rapid developments.Echocardiography is one of the best imaging methods for clinical diagnosis of heart diseases,and combining with AI could further improve its diagnostic efficiency.Though the applications of AI in echocardiography remained at a relatively early stage,a variety of automated quantitative and analytical techniques were rapidly emerging and initially entered clinical practice.The status of clinical applications of AI in echocardiography were reviewed in this article.展开更多
Introduction: Ultrafast latest developments in artificial intelligence (ΑΙ) have recently multiplied concerns regarding the future of robotic autonomy in surgery. However, the literature on the topic is still scarce...Introduction: Ultrafast latest developments in artificial intelligence (ΑΙ) have recently multiplied concerns regarding the future of robotic autonomy in surgery. However, the literature on the topic is still scarce. Aim: To test a novel AI commercially available tool for image analysis on a series of laparoscopic scenes. Methods: The research tools included OPENAI CHATGPT 4.0 with its corresponding image recognition plugin which was fed with a list of 100 laparoscopic selected snapshots from common surgical procedures. In order to score reliability of received responses from image-recognition bot, two corresponding scales were developed ranging from 0 - 5. The set of images was divided into two groups: unlabeled (Group A) and labeled (Group B), and according to the type of surgical procedure or image resolution. Results: AI was able to recognize correctly the context of surgical-related images in 97% of its reports. For the labeled surgical pictures, the image-processing bot scored 3.95/5 (79%), whilst for the unlabeled, it scored 2.905/5 (58.1%). Phases of the procedure were commented in detail, after all successful interpretations. With rates 4 - 5/5, the chatbot was able to talk in detail about the indications, contraindications, stages, instrumentation, complications and outcome rates of the operation discussed. Conclusion: Interaction between surgeon and chatbot appears to be an interesting frontend for further research by clinicians in parallel with evolution of its complex underlying infrastructure. In this early phase of using artificial intelligence for image recognition in surgery, no safe conclusions can be drawn by small cohorts with commercially available software. Further development of medically-oriented AI software and clinical world awareness are expected to bring fruitful information on the topic in the years to come.展开更多
Controlling intracranial pressure,nerve cell regeneration,and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury.There is currently a lack of effective treatment ...Controlling intracranial pressure,nerve cell regeneration,and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury.There is currently a lack of effective treatment methods.Hibernation has the characteristics of low temperature,low metabolism,and hibernation rhythm,as well as protective effects on the nervous,cardiovascular,and motor systems.Artificial hibernation technology is a new technology that can effectively treat acute brain injury by altering the body’s metabolism,lowering the body’s core temperature,and allowing the body to enter a state similar to hibernation.This review introduces artificial hibernation technology,including mild hypothermia treatment technology,central nervous system regulation technology,and artificial hibernation-inducer technology.Upon summarizing the relevant research on artificial hibernation technology in acute brain injury,the research results show that artificial hibernation technology has neuroprotective,anti-inflammatory,and oxidative stress-resistance effects,indicating that it has therapeutic significance in acute brain injury.Furthermore,artificial hibernation technology can alleviate the damage of ischemic stroke,traumatic brain injury,cerebral hemorrhage,cerebral infarction,and other diseases,providing new strategies for treating acute brain injury.However,artificial hibernation technology is currently in its infancy and has some complications,such as electrolyte imbalance and coagulation disorders,which limit its use.Further research is needed for its clinical application.展开更多
In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consump...In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consumption have always been one of the research hotspots.Recently,multifunctional sensors for perception of soft robotics have been rapidly developed,while more algorithms and models of machine learning with high accuracy have been optimized and proposed.Designs of soft robots with AI have also been advanced ranging from multimodal sensing,human-machine interaction to effective actuation in robotic systems.Nonethe-less,comprehensive reviews concerning the new developments and strategies for the ingenious design of the soft robotic systems equipped with AI are rare.Here,the new development is systematically reviewed in the field of soft robots with AI.First,background and mechanisms of soft robotic systems are briefed,after which development focused on how to endow the soft robots with AI,including the aspects of feeling,thought and reaction,is illustrated.Next,applications of soft robots with AI are systematically summarized and discussed together with advanced strategies proposed for performance enhancement.Design thoughts for future intelligent soft robotics are pointed out.Finally,some perspectives are put forward.展开更多
This editorial provides commentary on an article titled"Potential and limitationsof ChatGPT and generative artificial intelligence(AI)in medical safety education"recently published in the World Journal of Cl...This editorial provides commentary on an article titled"Potential and limitationsof ChatGPT and generative artificial intelligence(AI)in medical safety education"recently published in the World Journal of Clinical Cases.AI has enormous potentialfor various applications in the field of Kawasaki disease(KD).One is machinelearning(ML)to assist in the diagnosis of KD,and clinical prediction models havebeen constructed worldwide using ML;the second is using a gene signalcalculation toolbox to identify KD,which can be used to monitor key clinicalfeatures and laboratory parameters of disease severity;and the third is using deeplearning(DL)to assist in cardiac ultrasound detection.The performance of the DLalgorithm is similar to that of experienced cardiac experts in detecting coronaryartery lesions to promoting the diagnosis of KD.To effectively utilize AI in thediagnosis and treatment process of KD,it is crucial to improve the accuracy of AIdecision-making using more medical data,while addressing issues related topatient personal information protection and AI decision-making responsibility.AIprogress is expected to provide patients with accurate and effective medicalservices that will positively impact the diagnosis and treatment of KD in thefuture.展开更多
Spiking neural network(SNN),widely known as the third-generation neural network,has been frequently investigated due to its excellent spatiotemporal information processing capability,high biological plausibility,and l...Spiking neural network(SNN),widely known as the third-generation neural network,has been frequently investigated due to its excellent spatiotemporal information processing capability,high biological plausibility,and low energy consumption characteristics.Analogous to the working mechanism of human brain,the SNN system transmits information through the spiking action of neurons.Therefore,artificial neurons are critical building blocks for constructing SNN in hardware.Memristors are drawing growing attention due to low consumption,high speed,and nonlinearity characteristics,which are recently introduced to mimic the functions of biological neurons.Researchers have proposed multifarious memristive materials including organic materials,inorganic materials,or even two-dimensional materials.Taking advantage of the unique electrical behavior of these materials,several neuron models are successfully implemented,such as Hodgkin–Huxley model,leaky integrate-and-fire model and integrate-and-fire model.In this review,the recent reports of artificial neurons based on memristive devices are discussed.In addition,we highlight the models and applications through combining artificial neuronal devices with sensors or other electronic devices.Finally,the future challenges and outlooks of memristor-based artificial neurons are discussed,and the development of hardware implementation of brain-like intelligence system based on SNN is also prospected.展开更多
An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and ...An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and 9.3%,respectively.Through ANN model,the influence of interfacial tension and pulsation intensity on the droplet diameter has been developed.Droplet size gradually increases with the increase of interfacial tension,and decreases with the increase of pulse intensity.It can be seen that the accuracy of ANN model in predicting droplet size outside the training set range is reach the same level as the accuracy of correlation obtained based on experiments within this range.For two kinds of columns,the drop size prediction deviations of ANN model are 9.6%and 18.5%and the deviations in correlations are 11%and 15%.展开更多
基金supported by the Key-Area Research and Development Program of Guangdong Province(Grants No.2021B0909060002)National Natural Science Foundation of China(Grants No.62204219,62204140)Major Program of Natural Science Foundation of Zhejiang Province(Grants No.LDT23F0401).
文摘Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantages,convertingthe external analog signals to spikes is an essential prerequisite.Conventionalapproaches including analog-to-digital converters or ring oscillators,and sensorssuffer from high power and area costs.Recent efforts are devoted to constructingartificial sensory neurons based on emerging devices inspired by the biologicalsensory system.They can simultaneously perform sensing and spike conversion,overcoming the deficiencies of traditional sensory systems.This review summarizesand benchmarks the recent progress of artificial sensory neurons.It starts with thepresentation of various mechanisms of biological signal transduction,followed bythe systematic introduction of the emerging devices employed for artificial sensoryneurons.Furthermore,the implementations with different perceptual capabilitiesare briefly outlined and the key metrics and potential applications are also provided.Finally,we highlight the challenges and perspectives for the future development of artificial sensory neurons.
文摘The brain,with its trillions of neural connections,different cellular types,and molecular complexities,presents a formidable challenge for researchers aiming to comprehend the multifaceted nature of neural health.As traditional methods have provided valuable insights,emerging technologies offer unprecedented opportunities to delve deeper into the underpinnings of brain function.In the everevolving landscape of neuroscience,the quest to unravel the mysteries of the human brain is bound to take a leap forward thanks to new technological improvements and bold interpretative frameworks.
文摘The use of traditional herbal drugs derived from natural sources is on the rise due to their minimal side effects and numerous health benefits.However,a major limitation is the lack of standardized knowledge for identifying and mapping the quality of these herbal medicines.This article aims to provide practical insights into the application of artificial intelligence for quality-based commercialization of raw herbal drugs.It focuses on feature extraction methods,image processing techniques,and the preparation of herbal images for compatibility with machine learning models.The article discusses commonly used image processing tools such as normalization,slicing,cropping,and augmentation to prepare images for artificial intelligence-based models.It also provides an overview of global herbal image databases and the models employed for herbal plant/drug identification.Readers will gain a comprehensive understanding of the potential application of various machine learning models,including artificial neural networks and convolutional neural networks.The article delves into suitable validation parameters like true positive rates,accuracy,precision,and more for the development of artificial intelligence-based identification and authentication techniques for herbal drugs.This article offers valuable insights and a conclusive platform for the further exploration of artificial intelligence in the field of herbal drugs,paving the way for smarter identification and authentication methods.
文摘This editorial explores the transformative potential of artificial intelligence(AI)in identifying conflicts of interest(COIs)within academic and scientific research.By harnessing advanced data analysis,pattern recognition,and natural language processing techniques,AI offers innovative solutions for enhancing transparency and integrity in research.This editorial discusses how AI can automatically detect COIs,integrate data from various sources,and streamline reporting processes,thereby maintaining the credibility of scientific findings.
基金supported by the National Natural Science Foundation of China(Nos.U20A20209 and 62304228)the China National Postdoctoral Program for Innovative Talents(No.BX2021326)+3 种基金the China Postdoctoral Science Foundation(No.2021M703310)the Zhejiang Provincial Natural Science Foundation of China(No.LQ22F040003)the Ningbo Natural Science Foundation of China(No.2023J356)the State Key Laboratory for Environment-Friendly Energy Materials(No.20kfhg09).
文摘With the rapid development of artificial intelligence(AI)technology,the demand for high-performance and energyefficient computing is increasingly growing.The limitations of the traditional von Neumann computing architecture have prompted researchers to explore neuromorphic computing as a solution.Neuromorphic computing mimics the working principles of the human brain,characterized by high efficiency,low energy consumption,and strong fault tolerance,providing a hardware foundation for the development of new generation AI technology.Artificial neurons and synapses are the two core components of neuromorphic computing systems.Artificial perception is a crucial aspect of neuromorphic computing,where artificial sensory neurons play an irreplaceable role thus becoming a frontier and hot topic of research.This work reviews recent advances in artificial sensory neurons and their applications.First,biological sensory neurons are briefly described.Then,different types of artificial neurons,such as transistor neurons and memristive neurons,are discussed in detail,focusing on their device structures and working mechanisms.Next,the research progress of artificial sensory neurons and their applications in artificial perception systems is systematically elaborated,covering various sensory types,including vision,touch,hearing,taste,and smell.Finally,challenges faced by artificial sensory neurons at both device and system levels are summarized.
基金Supported by the 135 High-end Talent Project of West China Hospital,Sichuan University,No.ZYDG23029.
文摘BACKGROUND Recent advancements in artificial intelligence(AI)have significantly enhanced the capabilities of endoscopic-assisted diagnosis for gastrointestinal diseases.AI has shown great promise in clinical practice,particularly for diagnostic support,offering real-time insights into complex conditions such as esophageal squamous cell carcinoma.CASE SUMMARY In this study,we introduce a multimodal AI system that successfully identified and delineated a small and flat carcinoma during esophagogastroduodenoscopy,highlighting its potential for early detection of malignancies.The lesion was confirmed as high-grade squamous intraepithelial neoplasia,with pathology results supporting the AI system’s accuracy.The multimodal AI system offers an integrated solution that provides real-time,accurate diagnostic information directly within the endoscopic device interface,allowing for single-monitor use without disrupting endoscopist’s workflow.CONCLUSION This work underscores the transformative potential of AI to enhance endoscopic diagnosis by enabling earlier,more accurate interventions.
基金supported by the National Natural Science Foundation of China(Grant No.62074163)Beijing Natural Science Foundation(Grant No.JQ24030).
文摘Organic electrochemical transistors have emerged as a solution for artificial synapses that mimic the neural functions of the brain structure,holding great potentials to break the bottleneck of von Neumann architectures.However,current artificial synapses rely primarily on electrical signals,and little attention has been paid to the vital role of neurotransmitter-mediated artificial synapses.Dopamine is a key neurotransmitter associated with emotion regulation and cognitive processes that needs to be monitored in real time to advance the development of disease diagnostics and neuroscience.To provide insights into the development of artificial synapses with neurotransmitter involvement,this review proposes three steps towards future biomimic and bioinspired neuromorphic systems.We first summarize OECT-based dopamine detection devices,and then review advances in neurotransmitter-mediated artificial synapses and resultant advanced neuromorphic systems.Finally,by exploring the challenges and opportunities related to such neuromorphic systems,we provide a perspective on the future development of biomimetic and bioinspired neuromorphic systems.
文摘In this editorial,we discuss the article by Singh et al published in World Journal of Nephrology,stating the need for timely adjustments in inflammatory bowel disease(IBD)patients'long-term management plans.IBD is chronic and lifelong,with recurrence and remission cycles,including ulcerative colitis and Crohn's disease.It's exact etiology is unknown but likely multifactorial.Related to gut flora and immune issues.Besides intestinal symptoms,IBD can also affect various extrain-testinal manifestations such as those involving the skin,joints,eyes and urinary system.The anatomical proximity of urinary system waste disposal to that of the alimentary canal makes early detection and the differentiation of such symptoms very difficult.Various studies show that IBD and it's first-line drugs have nephro-toxicity,impacting the patients'life quality.Existing guidelines give very few references for kidney lesion monitoring.Singh et al's plan aims to improve treatment management for IBD patients with glomerular filtration rate decline,specifically those at risk.Most of IBD patients are young and they need lifelong therapy.So early therapy cessation,taking into account drug side effects,can be helpful.Artificial intelligence-driven diagnosis and treatment has a big potential for management improvements in IBD and other chronic diseases.
文摘The integration of artificial intelligence(AI)and multiomics has transformed clinical and life sciences,enabling precision medicine and redefining disease understanding.Scientific publications grew significantly from 2.1 million in 2012 to 3.3 million in 2022,with AI research tripling during this period.Multiomics fields,including genomics and proteomics,also advanced,exemplified by the Human Proteome Project achieving a 90%complete blueprint by 2021.This growth highlights opportunities and challenges in integrating AI and multiomics into clinical reporting.A review of studies and case reports was conducted to evaluate AI and multiomics integration.Key areas analyzed included diagnostic accuracy,predictive modeling,and personalized treatment approaches driven by AI tools.Case examples were studied to assess impacts on clinical decision-making.AI and multiomics enhanced data integration,predictive insights,and treatment personalization.Fields like radiomics,genomics,and proteomics improved diagnostics and guided therapy.For instance,the“AI radiomics,geno-mics,oncopathomics,and surgomics project”combined radiomics and genomics for surgical decision-making,enabling preoperative,intraoperative,and post-operative interventions.AI applications in case reports predicted conditions like postoperative delirium and monitored cancer progression using genomic and imaging data.AI and multiomics enable standardized data analysis,dynamic updates,and predictive modeling in case reports.Traditional reports often lack objectivity,but AI enhances reproducibility and decision-making by processing large datasets.Challenges include data standardization,biases,and ethical concerns.Overcoming these barriers is vital for optimizing AI applications and advancing personalized medicine.AI and multiomics integration is revolutionizing clinical research and practice.Standardizing data reporting and addressing challenges in ethics and data quality will unlock their full potential.Emphasizing collaboration and transparency is essential for leveraging these tools to improve patient care and scientific communication.
基金in part supported by the National Natural Science Foundation of China(Grant Nos.42288101,42405147 and 42475054)in part by the China National Postdoctoral Program for Innovative Talents(Grant No.BX20230071)。
文摘Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences.
基金supported by the National Natural Science Foundation of China(Grant Nos.42141019 and 42261144687)and STEP(Grant No.2019QZKK0102)supported by the Korea Environmental Industry&Technology Institute(KEITI)through the“Project for developing an observation-based GHG emissions geospatial information map”,funded by the Korea Ministry of Environment(MOE)(Grant No.RS-2023-00232066).
文摘Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of physics in climate science has occasionally been overlooked.Our perspective suggests that the future of climate modeling involves a synergistic partnership between AI and physics,rather than an“either/or”scenario.Scrutinizing controversies around current physical inconsistencies in large AI models,we stress the critical need for detailed dynamic diagnostics and physical constraints.Furthermore,we provide illustrative examples to guide future assessments and constraints for AI models.Regarding AI integration with numerical models,we argue that offline AI parameterization schemes may fall short of achieving global optimality,emphasizing the importance of constructing online schemes.Additionally,we highlight the significance of fostering a community culture and propose the OCR(Open,Comparable,Reproducible)principles.Through a better community culture and a deep integration of physics and AI,we contend that developing a learnable climate model,balancing AI and physics,is an achievable goal.
基金supported by the Capital’s Funds for Health Improvement and Research,No.2022-2-2072(to YG).
文摘Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms.To investigate advances in the use of artificial intelligence in the diagnosis,rehabilitation,and scientific examination of peripheral nerve injury,we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023.We identified the following research hotspots in peripheral nerve injury and repair:(1)diagnosis,classification,and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques,such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy;(2)motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms,such as wearable devices and assisted wheelchair systems;(3)improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning,such as implantable peripheral nerve interfaces;(4)the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility,enabling them to control devices such as networked hand prostheses;(5)artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation,thereby reducing surgical risk and complications,and facilitating postoperative recovery.Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair,there are some limitations to this technology,such as the consequences of missing or imbalanced data,low data accuracy and reproducibility,and ethical issues(e.g.,privacy,data security,research transparency).Future research should address the issue of data collection,as large-scale,high-quality clinical datasets are required to establish effective artificial intelligence models.Multimodal data processing is also necessary,along with interdisciplinary collaboration,medical-industrial integration,and multicenter,large-sample clinical studies.
文摘Background: The growth and use of Artificial Intelligence (AI) in the medical field is rapidly rising. AI is exhibiting a practical tool in the healthcare industry in patient care. The objective of this current review is to assess and analyze the use of AI and its use in orthopedic practice, as well as its applications, limitations, and pitfalls. Methods: A review of all relevant databases such as EMBASE, Cochrane Database of Systematic Reviews, MEDLINE, Science Citation Index, Scopus, and Web of Science with keywords of AI, orthopedic surgery, applications, and drawbacks. All related articles on AI and orthopaedic practice were reviewed. A total of 3210 articles were included in the review. Results: The data from 351 studies were analyzed where in orthopedic surgery. AI is being used for diagnostic procedures, radiological diagnosis, models of clinical care, and utilization of hospital and bed resources. AI has also taken a chunk of share in assisted robotic orthopaedic surgery. Conclusions: AI has now become part of the orthopedic practice and will further increase its stake in the healthcare industry. Nonetheless, clinicians should remain aware of AI’s serious limitations and pitfalls and consider the drawbacks and errors in its use.
文摘Artificial intelligence(AI)technology has been increasingly used in medical field with its rapid developments.Echocardiography is one of the best imaging methods for clinical diagnosis of heart diseases,and combining with AI could further improve its diagnostic efficiency.Though the applications of AI in echocardiography remained at a relatively early stage,a variety of automated quantitative and analytical techniques were rapidly emerging and initially entered clinical practice.The status of clinical applications of AI in echocardiography were reviewed in this article.
文摘Introduction: Ultrafast latest developments in artificial intelligence (ΑΙ) have recently multiplied concerns regarding the future of robotic autonomy in surgery. However, the literature on the topic is still scarce. Aim: To test a novel AI commercially available tool for image analysis on a series of laparoscopic scenes. Methods: The research tools included OPENAI CHATGPT 4.0 with its corresponding image recognition plugin which was fed with a list of 100 laparoscopic selected snapshots from common surgical procedures. In order to score reliability of received responses from image-recognition bot, two corresponding scales were developed ranging from 0 - 5. The set of images was divided into two groups: unlabeled (Group A) and labeled (Group B), and according to the type of surgical procedure or image resolution. Results: AI was able to recognize correctly the context of surgical-related images in 97% of its reports. For the labeled surgical pictures, the image-processing bot scored 3.95/5 (79%), whilst for the unlabeled, it scored 2.905/5 (58.1%). Phases of the procedure were commented in detail, after all successful interpretations. With rates 4 - 5/5, the chatbot was able to talk in detail about the indications, contraindications, stages, instrumentation, complications and outcome rates of the operation discussed. Conclusion: Interaction between surgeon and chatbot appears to be an interesting frontend for further research by clinicians in parallel with evolution of its complex underlying infrastructure. In this early phase of using artificial intelligence for image recognition in surgery, no safe conclusions can be drawn by small cohorts with commercially available software. Further development of medically-oriented AI software and clinical world awareness are expected to bring fruitful information on the topic in the years to come.
基金supported by the National Defense Science and Technology Outstanding Youth Science Fund Project,No.2021-JCJQ-ZQ-035National Defense Innovation Special Zone Project,No.21-163-12-ZT-006-002-13Key Program of the National Natural Science Foundation of China,No.11932013(all to XuC).
文摘Controlling intracranial pressure,nerve cell regeneration,and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury.There is currently a lack of effective treatment methods.Hibernation has the characteristics of low temperature,low metabolism,and hibernation rhythm,as well as protective effects on the nervous,cardiovascular,and motor systems.Artificial hibernation technology is a new technology that can effectively treat acute brain injury by altering the body’s metabolism,lowering the body’s core temperature,and allowing the body to enter a state similar to hibernation.This review introduces artificial hibernation technology,including mild hypothermia treatment technology,central nervous system regulation technology,and artificial hibernation-inducer technology.Upon summarizing the relevant research on artificial hibernation technology in acute brain injury,the research results show that artificial hibernation technology has neuroprotective,anti-inflammatory,and oxidative stress-resistance effects,indicating that it has therapeutic significance in acute brain injury.Furthermore,artificial hibernation technology can alleviate the damage of ischemic stroke,traumatic brain injury,cerebral hemorrhage,cerebral infarction,and other diseases,providing new strategies for treating acute brain injury.However,artificial hibernation technology is currently in its infancy and has some complications,such as electrolyte imbalance and coagulation disorders,which limit its use.Further research is needed for its clinical application.
基金supported by the Hong Kong Polytechnic University(Project No.1-WZ1Y).
文摘In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consumption have always been one of the research hotspots.Recently,multifunctional sensors for perception of soft robotics have been rapidly developed,while more algorithms and models of machine learning with high accuracy have been optimized and proposed.Designs of soft robots with AI have also been advanced ranging from multimodal sensing,human-machine interaction to effective actuation in robotic systems.Nonethe-less,comprehensive reviews concerning the new developments and strategies for the ingenious design of the soft robotic systems equipped with AI are rare.Here,the new development is systematically reviewed in the field of soft robots with AI.First,background and mechanisms of soft robotic systems are briefed,after which development focused on how to endow the soft robots with AI,including the aspects of feeling,thought and reaction,is illustrated.Next,applications of soft robots with AI are systematically summarized and discussed together with advanced strategies proposed for performance enhancement.Design thoughts for future intelligent soft robotics are pointed out.Finally,some perspectives are put forward.
文摘This editorial provides commentary on an article titled"Potential and limitationsof ChatGPT and generative artificial intelligence(AI)in medical safety education"recently published in the World Journal of Clinical Cases.AI has enormous potentialfor various applications in the field of Kawasaki disease(KD).One is machinelearning(ML)to assist in the diagnosis of KD,and clinical prediction models havebeen constructed worldwide using ML;the second is using a gene signalcalculation toolbox to identify KD,which can be used to monitor key clinicalfeatures and laboratory parameters of disease severity;and the third is using deeplearning(DL)to assist in cardiac ultrasound detection.The performance of the DLalgorithm is similar to that of experienced cardiac experts in detecting coronaryartery lesions to promoting the diagnosis of KD.To effectively utilize AI in thediagnosis and treatment process of KD,it is crucial to improve the accuracy of AIdecision-making using more medical data,while addressing issues related topatient personal information protection and AI decision-making responsibility.AIprogress is expected to provide patients with accurate and effective medicalservices that will positively impact the diagnosis and treatment of KD in thefuture.
基金supported financially by the fund from the Ministry of Science and Technology of China(Grant No.2019YFB2205100)the National Science Fund for Distinguished Young Scholars(No.52025022)+3 种基金the National Nature Science Foundation of China(Grant Nos.U19A2091,62004016,51732003,52072065,1197407252272140 and 52372137)the‘111’Project(Grant No.B13013)the Fundamental Research Funds for the Central Universities(Nos.2412023YQ004 and 2412022QD036)the funding from Jilin Province(Grant Nos.20210201062GX,20220502002GH,20230402072GH,20230101017JC and 20210509045RQ)。
文摘Spiking neural network(SNN),widely known as the third-generation neural network,has been frequently investigated due to its excellent spatiotemporal information processing capability,high biological plausibility,and low energy consumption characteristics.Analogous to the working mechanism of human brain,the SNN system transmits information through the spiking action of neurons.Therefore,artificial neurons are critical building blocks for constructing SNN in hardware.Memristors are drawing growing attention due to low consumption,high speed,and nonlinearity characteristics,which are recently introduced to mimic the functions of biological neurons.Researchers have proposed multifarious memristive materials including organic materials,inorganic materials,or even two-dimensional materials.Taking advantage of the unique electrical behavior of these materials,several neuron models are successfully implemented,such as Hodgkin–Huxley model,leaky integrate-and-fire model and integrate-and-fire model.In this review,the recent reports of artificial neurons based on memristive devices are discussed.In addition,we highlight the models and applications through combining artificial neuronal devices with sensors or other electronic devices.Finally,the future challenges and outlooks of memristor-based artificial neurons are discussed,and the development of hardware implementation of brain-like intelligence system based on SNN is also prospected.
基金the support of the National Natural Science Foundation of China(22278234,21776151)。
文摘An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and 9.3%,respectively.Through ANN model,the influence of interfacial tension and pulsation intensity on the droplet diameter has been developed.Droplet size gradually increases with the increase of interfacial tension,and decreases with the increase of pulse intensity.It can be seen that the accuracy of ANN model in predicting droplet size outside the training set range is reach the same level as the accuracy of correlation obtained based on experiments within this range.For two kinds of columns,the drop size prediction deviations of ANN model are 9.6%and 18.5%and the deviations in correlations are 11%and 15%.