Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Ne...Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities.展开更多
Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on p...Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms.To investigate advances in the use of artificial intelligence in the diagnosis,rehabilitation,and scientific examination of peripheral nerve injury,we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023.We identified the following research hotspots in peripheral nerve injury and repair:(1)diagnosis,classification,and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques,such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy;(2)motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms,such as wearable devices and assisted wheelchair systems;(3)improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning,such as implantable peripheral nerve interfaces;(4)the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility,enabling them to control devices such as networked hand prostheses;(5)artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation,thereby reducing surgical risk and complications,and facilitating postoperative recovery.Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair,there are some limitations to this technology,such as the consequences of missing or imbalanced data,low data accuracy and reproducibility,and ethical issues(e.g.,privacy,data security,research transparency).Future research should address the issue of data collection,as large-scale,high-quality clinical datasets are required to establish effective artificial intelligence models.Multimodal data processing is also necessary,along with interdisciplinary collaboration,medical-industrial integration,and multicenter,large-sample clinical studies.展开更多
Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for pre...Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for precursors for developing a one-part geopolymer.However,determining the optimum content of the input parameters to obtain adequate performance is quite challenging and scarcely reported.Therefore,in this study,machine learning methods such as artificial neural networks(ANN)and gene expression programming(GEP)models were developed usingMATLAB and GeneXprotools,respectively,for the prediction of compressive strength under variable input materials and content for fly ash and slag-based one-part geopolymer.The database for this study contains 171 points extracted from literature with input parameters:fly ash concentration,slag content,calcium hydroxide content,sodium oxide dose,water binder ratio,and curing temperature.The performance of the two models was evaluated under various statistical indices,namely correlation coefficient(R),mean absolute error(MAE),and rootmean square error(RMSE).In terms of the strength prediction efficacy of a one-part geopolymer,ANN outperformed GEP.Sensitivity and parametric analysis were also performed to identify the significant contributor to strength.According to a sensitivity analysis,the activator and slag contents had the most effects on the compressive strength at 28 days.The water binder ratio was shown to be directly connected to activator percentage,slag percentage,and calcium hydroxide percentage and inversely related to compressive strength at 28 days and curing temperature.展开更多
Purpose This scoping review aimed to offer researchers and practitioners an understanding of artificial intelligence(AI)applications in physical activity(PA)interventions;introduce them to prevalent machine learning(M...Purpose This scoping review aimed to offer researchers and practitioners an understanding of artificial intelligence(AI)applications in physical activity(PA)interventions;introduce them to prevalent machine learning(ML),deep learning(DL),and reinforcement learning(RL)algorithms;and encourage the adoption of AI methodologies.Methods A scoping review was performed in PubMed,Web of Science,Cochrane Library,and EBSCO focusing on AI applications for promoting PA or predicting related behavioral or health outcomes.AI methodologies were summarized and categorized to identify synergies,patterns,and trends informing future research.Additionally,a concise primer on predominant AI methodologies within the realm of PA was provided to bolster understanding and broader application.Results The review included 24 studies that met the predetermined eligibility criteria.AI models were found effective in detecting significant patterns of PA behavior and associations between specific factors and intervention outcomes.Most studies comparing AI models to traditional statistical approaches reported higher prediction accuracy for AI models on test data.Comparisons of different AI models yielded mixed results,likely due to model performance being highly dependent on the dataset and task.An increasing trend of adopting state-of-the-art DL and RL models over standard ML was observed,addressing complex human–machine communication,behavior modification,and decision-making tasks.Six key areas for future AI adoption in PA interventions emerged:personalized PA interventions,real-time monitoring and adaptation,integration of multimodal data sources,evaluation of intervention effectiveness,expanding access to PA interventions,and predicting and preventing injuries.Conclusion The scoping review highlights the potential of AI methodologies for advancing PA interventions.As the field progresses,staying informed and exploring emerging AI-driven strategies is essential for achieving significant improvements in PA interventions and fostering overall well-being.展开更多
Research on Chinese Sign Language(CSL)provides convenience and support for individuals with hearing impairments to communicate and integrate into society.This article reviews the relevant literature on Chinese Sign La...Research on Chinese Sign Language(CSL)provides convenience and support for individuals with hearing impairments to communicate and integrate into society.This article reviews the relevant literature on Chinese Sign Language Recognition(CSLR)in the past 20 years.Hidden Markov Models(HMM),Support Vector Machines(SVM),and Dynamic Time Warping(DTW)were found to be the most commonly employed technologies among traditional identificationmethods.Benefiting from the rapid development of computer vision and artificial intelligence technology,Convolutional Neural Networks(CNN),3D-CNN,YOLO,Capsule Network(CapsNet)and various deep neural networks have sprung up.Deep Neural Networks(DNNs)and their derived models are integral tomodern artificial intelligence recognitionmethods.In addition,technologies thatwerewidely used in the early days have also been integrated and applied to specific hybrid models and customized identification methods.Sign language data collection includes acquiring data from data gloves,data sensors(such as Kinect,LeapMotion,etc.),and high-definition photography.Meanwhile,facial expression recognition,complex background processing,and 3D sign language recognition have also attracted research interests among scholars.Due to the uniqueness and complexity of Chinese sign language,accuracy,robustness,real-time performance,and user independence are significant challenges for future sign language recognition research.Additionally,suitable datasets and evaluation criteria are also worth pursuing.展开更多
Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve ...Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications.展开更多
Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take ca...Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take care of something called the generalization of the neural network. The performance of Artificial Neural Networks (ANN) mostly depends upon its generalization capability. In this paper, we propose an innovative approach to enhance the generalization capability of artificial neural networks (ANN) using structural redundancy. A novel perspective on handling input data prototypes and their impact on the development of generalization, which could improve to ANN architectures accuracy and reliability is described.展开更多
AI development has brought great success to upgrading the information age.At the same time,the large-scale artificial neural network for building AI systems is thirsty for computing power,which is barely satisfied by ...AI development has brought great success to upgrading the information age.At the same time,the large-scale artificial neural network for building AI systems is thirsty for computing power,which is barely satisfied by the conventional computing hardware.In the post-Moore era,the increase in computing power brought about by the size reduction of CMOS in very large-scale integrated circuits(VLSIC)is challenging to meet the growing demand for AI computing power.To address the issue,technical approaches like neuromorphic computing attract great attention because of their feature of breaking Von-Neumann architecture,and dealing with AI algorithms much more parallelly and energy efficiently.Inspired by the human neural network architecture,neuromorphic computing hardware is brought to life based on novel artificial neurons constructed by new materials or devices.Although it is relatively difficult to deploy a training process in the neuromorphic architecture like spiking neural network(SNN),the development in this field has incubated promising technologies like in-sensor computing,which brings new opportunities for multidisciplinary research,including the field of optoelectronic materials and devices,artificial neural networks,and microelectronics integration technology.The vision chips based on the architectures could reduce unnecessary data transfer and realize fast and energy-efficient visual cognitive processing.This paper reviews firstly the architectures and algorithms of SNN,and artificial neuron devices supporting neuromorphic computing,then the recent progress of in-sensor computing vision chips,which all will promote the development of AI.展开更多
Over the years,the continuous development of new technology has promoted research in the field of posture recognition and also made the application field of posture recognition have been greatly expanded.The purpose o...Over the years,the continuous development of new technology has promoted research in the field of posture recognition and also made the application field of posture recognition have been greatly expanded.The purpose of this paper is to introduce the latest methods of posture recognition and review the various techniques and algorithms of posture recognition in recent years,such as scale-invariant feature transform,histogram of oriented gradients,support vectormachine(SVM),Gaussian mixturemodel,dynamic time warping,hiddenMarkovmodel(HMM),lightweight network,convolutional neural network(CNN).We also investigate improved methods of CNN,such as stacked hourglass networks,multi-stage pose estimation networks,convolutional posemachines,and high-resolution nets.The general process and datasets of posture recognition are analyzed and summarized,and several improved CNNmethods and threemain recognition techniques are compared.In addition,the applications of advanced neural networks in posture recognition,such as transfer learning,ensemble learning,graph neural networks,and explainable deep neural networks,are introduced.It was found that CNN has achieved great success in posture recognition and is favored by researchers.Still,a more in-depth research is needed in feature extraction,information fusion,and other aspects.Among classification methods,HMM and SVM are the most widely used,and lightweight network gradually attracts the attention of researchers.In addition,due to the lack of 3Dbenchmark data sets,data generation is a critical research direction.展开更多
In modern terminology,“organoids”refer to cells that grow in a specific three-dimensional(3D)environment in vitro,sharing similar structures with their source organs or tissues.Observing themorphology or growth char...In modern terminology,“organoids”refer to cells that grow in a specific three-dimensional(3D)environment in vitro,sharing similar structures with their source organs or tissues.Observing themorphology or growth characteristics of organoids through a microscope is a commonly used method of organoid analysis.However,it is difficult,time-consuming,and inaccurate to screen and analyze organoids only manually,a problem which cannot be easily solved with traditional technology.Artificial intelligence(AI)technology has proven to be effective in many biological and medical research fields,especially in the analysis of single-cell or hematoxylin/eosin stained tissue slices.When used to analyze organoids,AI should also provide more efficient,quantitative,accurate,and fast solutions.In this review,we will first briefly outline the application areas of organoids and then discuss the shortcomings of traditional organoid measurement and analysis methods.Secondly,we will summarize the development from machine learning to deep learning and the advantages of the latter,and then describe how to utilize a convolutional neural network to solve the challenges in organoid observation and analysis.Finally,we will discuss the limitations of current AI used in organoid research,as well as opportunities and future research directions.展开更多
A well-managed financial market of stocks,commodities,derivatives,and bonds is crucial to a country’s economic growth.It provides confidence to investors,which encourages the inflow of cash to ensure good market liqu...A well-managed financial market of stocks,commodities,derivatives,and bonds is crucial to a country’s economic growth.It provides confidence to investors,which encourages the inflow of cash to ensure good market liquidity.However,there will always be a group of traders that aims to manipulate market pricing to negatively influence stock values in their favor.These illegal trading activities are surely prohibited according to the rules and regulations of every country’s stockmarket.It is the role of regulators to detect and prevent any manipulation cases in order to provide a trading platform that is fair and efficient.However,the complexity of manipulation cases has increased significantly,coupled with high trading volumes,which makes the manual observations of such cases by human operators no longer feasible.As a result,many intelligent systems have been developed by researchers all over the world to automatically detect various types of manipulation cases.Therefore,this review paper aims to comprehensively discuss the state-of-theart methods that have been developed to detect and recognize stock market manipulation cases.It also provides a concise definition of manipulation taxonomy,including manipulation types and categories,as well as some of the output of early experimental research.In summary,this paper provides a thorough review of the automated methods for detecting stock market manipulation cases.展开更多
Overconfidence behavior,one form of positive illusion,has drawn considerable attention throughout history because it is viewed as the main reason for many crises.Investors’overconfidence,which can be observed as over...Overconfidence behavior,one form of positive illusion,has drawn considerable attention throughout history because it is viewed as the main reason for many crises.Investors’overconfidence,which can be observed as overtrading following positive returns,may lead to inefficiencies in stock markets.To the best of our knowledge,this is the first study to examine the presence of investor overconfidence by employing an artificial intelligence technique and a nonlinear approach to impulse responses to analyze the impact of different return regimes on the overconfidence attitude.We examine whether investors in an emerging stock market(Borsa Istanbul)exhibit overconfidence behavior using a feed-forward,neural network,nonlinear Granger causality test and nonlinear impulseresponse functions based on local projections.These are the first applications in the relevant literature due to the novelty of these models in forecasting high-dimensional,multivariate time series.The results obtained from distinguishing between the different market regimes to analyze the responses of trading volume to return shocks contradict those in the literature,which is the key contribution of the study.The empirical findings imply that overconfidence behavior exhibits asymmetries in different return regimes and is persistent during the 20-day forecasting horizon.Overconfidence is more persistent in the low-than in the high-return regime.In the negative interest-rate period,a high-return regime induces overconfidence behavior,whereas in the positive interest-rate period,a low-return regime induces overconfidence behavior.Based on the empirical findings,investors should be aware that portfolio gains may result in losses depending on aggressive and excessive trading strategies,particularly in low-return regimes.展开更多
Optical Character Recognition(OCR)refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image.This paper is a deep study on the recognition effe...Optical Character Recognition(OCR)refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image.This paper is a deep study on the recognition effect of OCR based on Artificial Intelligence(AI)algorithms,in which the different AI algorithms for OCR analysis are classified and reviewed.Firstly,the mechanisms and characteristics of artificial neural network-based OCR are summarized.Secondly,this paper explores machine learning-based OCR,and draws the conclusion that the algorithms available for this form of OCR are still in their infancy,with low generalization and fixed recognition errors,albeit with better recognition effect and higher recognition accuracy.Finally,this paper explores several of the latest algorithms such as deep learning and pattern recognition algorithms.This paper concludes that OCR requires algorithms with higher recognition accuracy.展开更多
The varieties and capabilities of artificial intelligence and machine learning in orthopedic surgery are extensively expanding.One promising method is neural networks,emphasizing big data and computer-based learning s...The varieties and capabilities of artificial intelligence and machine learning in orthopedic surgery are extensively expanding.One promising method is neural networks,emphasizing big data and computer-based learning systems to develop a statistical fracture-detecting model.It derives patterns and rules from outstanding amounts of data to analyze the probabilities of different outcomes using new sets of similar data.The sensitivity and specificity of machine learning in detecting fractures vary from previous studies.AI may be most promising in the diagnosis of less-obvious fractures that are more commonly missed.Future studies are necessary to develop more accurate and effective detection models that can be used clinically.展开更多
To transition from conventional to intelligent real estate, the real estate industry must enhance its embrace of disruptive technology. Even though the real estate auction market has grown in importance in the financi...To transition from conventional to intelligent real estate, the real estate industry must enhance its embrace of disruptive technology. Even though the real estate auction market has grown in importance in the financial, economic, and investment sectors, few artificial intelligence-based research has tried to predict the auction values of real estate in the past. According to the objectives of this research, artificial intelligence and statistical methods will be used to create forecasting models for real estate auction prices. A multiple regression model and an artificial neural network are used in conjunction with one another to build the forecasting models. For the empirical study, the study utilizes data from Ghana apartment auctions from 2016 to 2020 to anticipate auction prices and evaluate the forecasting accuracy of the various models available at the time. Compared to the conventional Multiple Regression Analysis, using artificial intelligence systems for real estate appraisal is becoming a more viable option (MRA). The Artificial Neural network model exhibits the most outstanding performance, and efficient zonal segmentation based on the auction evaluation price enhances the model’s prediction accuracy even more. There is a statistically significant difference between the two models when it comes to forecasting the values of real estate auctions.展开更多
Artificial intelligence(AI) using deep-learning(DL) has emerged as a breakthrough computer technology. By the era of big data, the accumulation of an enormous number of digital images and medical records drove the nee...Artificial intelligence(AI) using deep-learning(DL) has emerged as a breakthrough computer technology. By the era of big data, the accumulation of an enormous number of digital images and medical records drove the need for the utilization of AI to efficiently deal with these data, which have become fundamental resources for a machine to learn by itself. Among several DL models, the convolutional neural network showed outstanding performance in image analysis. In the field of gastroenterology, physicians handle large amounts of clinical data and various kinds of image devices such as endoscopy and ultrasound. AI has been applied in gastroenterology in terms of diagnosis,prognosis, and image analysis. However, potential inherent selection bias cannot be excluded in the form of retrospective study. Because overfitting and spectrum bias(class imbalance) have the possibility of overestimating the accuracy,external validation using unused datasets for model development, collected in a way that minimizes the spectrum bias, is mandatory. For robust verification,prospective studies with adequate inclusion/exclusion criteria, which represent the target populations, are needed. DL has its own lack of interpretability.Because interpretability is important in that it can provide safety measures, help to detect bias, and create social acceptance, further investigations should be performed.展开更多
It is essential to utilize deep-learning algorithms based on big data for the implementation of the new generation of artificial intelligence. Effective utilization of deep learning relies considerably on the number o...It is essential to utilize deep-learning algorithms based on big data for the implementation of the new generation of artificial intelligence. Effective utilization of deep learning relies considerably on the number of labeled samples, which restricts the application of deep learning in an environment with a small sample size. In this paper, we propose an approach based on a generative adversarial network (GAN) combined with a deep neural network (DNN). First, the original samples were divided into a training set and a test set. The GAN was trained with the training set to generate synthetic sample data, which enlarged the training set. Next, the DNN classifier was trained with the synthetic samples. Finally, the classifier was tested with the test set, and the effectiveness of the approach for multi-classification with a small sample size was validated by the indicators. As an empirical case, the approach was then applied to identify the stages of cancers with a small labeled sample size. The experimental results verified that the proposed approach achieved a greater accuracy than traditional methods. This research was an attempt to transform the classical statistical machine-learning classification method based on original samples into a deep-learning classification method based on data augmentation. The use of this approach will contribute to an expansion of application scenarios for the new generation of artificial intelligence based on deep learning, and to an increase in application effectiveness. This research is also expected to contribute to the comprehensive promotion of new-generation artificial intelligence.展开更多
Geotechnical engineering deals with materials(e.g. soil and rock) that, by their very nature, exhibit varied and uncertain behavior due to the imprecise physical processes associated with the formation of these mate...Geotechnical engineering deals with materials(e.g. soil and rock) that, by their very nature, exhibit varied and uncertain behavior due to the imprecise physical processes associated with the formation of these materials. Modeling the behavior of such materials in geotechnical engineering applications is complex and sometimes beyond the ability of most traditional forms of physically-based engineering methods. Artificial intelligence(AI) is becoming more popular and particularly amenable to modeling the complex behavior of most geotechnical engineering applications because it has demonstrated superior predictive ability compared to traditional methods. This paper provides state-of-the-art review of some selected AI techniques and their applications in pile foundations, and presents the salient features associated with the modeling development of these AI techniques. The paper also discusses the strength and limitations of the selected AI techniques compared to other available modeling approaches.展开更多
Blasting is the live wire of mining and its operations,with air overpressure(AOp)recognised as an end product of blasting.AOp is known to be one of the most important environmental hazards of mining.Further research i...Blasting is the live wire of mining and its operations,with air overpressure(AOp)recognised as an end product of blasting.AOp is known to be one of the most important environmental hazards of mining.Further research in this area of mining is required to help improve on safety of the working environment.Review of previous studies has shown that many empirical and artificial intelligence(AI)methods have been proposed as a forecasting model.As an alternative to the previous methods,this study proposes a new class of advanced artificial neural network known as brain inspired emotional neural network(BIENN)to predict AOp.The proposed BI-ENN approach is compared with two classical AOp predictors(generalised predictor and McKenzie formula)and three established AI methods of backpropagation neural network(BPNN),group method of data handling(GMDH),and support vector machine(SVM).From the analysis of the results,BI-ENN is the best by achieving the least RMSE,MAPE,NRMSE and highest R,VAF and PI values of 1.0941,0.8339%,0.1243%,0.8249,68.0512%and 1.2367 respectively and thus can be used for monitoring and controlling AOp.展开更多
基金the Deanship of Scientific Research at Majmaah University for supporting this work under Project No.R-2024-1008.
文摘Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities.
基金supported by the Capital’s Funds for Health Improvement and Research,No.2022-2-2072(to YG).
文摘Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms.To investigate advances in the use of artificial intelligence in the diagnosis,rehabilitation,and scientific examination of peripheral nerve injury,we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023.We identified the following research hotspots in peripheral nerve injury and repair:(1)diagnosis,classification,and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques,such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy;(2)motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms,such as wearable devices and assisted wheelchair systems;(3)improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning,such as implantable peripheral nerve interfaces;(4)the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility,enabling them to control devices such as networked hand prostheses;(5)artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation,thereby reducing surgical risk and complications,and facilitating postoperative recovery.Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair,there are some limitations to this technology,such as the consequences of missing or imbalanced data,low data accuracy and reproducibility,and ethical issues(e.g.,privacy,data security,research transparency).Future research should address the issue of data collection,as large-scale,high-quality clinical datasets are required to establish effective artificial intelligence models.Multimodal data processing is also necessary,along with interdisciplinary collaboration,medical-industrial integration,and multicenter,large-sample clinical studies.
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2023-02-02385).
文摘Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for precursors for developing a one-part geopolymer.However,determining the optimum content of the input parameters to obtain adequate performance is quite challenging and scarcely reported.Therefore,in this study,machine learning methods such as artificial neural networks(ANN)and gene expression programming(GEP)models were developed usingMATLAB and GeneXprotools,respectively,for the prediction of compressive strength under variable input materials and content for fly ash and slag-based one-part geopolymer.The database for this study contains 171 points extracted from literature with input parameters:fly ash concentration,slag content,calcium hydroxide content,sodium oxide dose,water binder ratio,and curing temperature.The performance of the two models was evaluated under various statistical indices,namely correlation coefficient(R),mean absolute error(MAE),and rootmean square error(RMSE).In terms of the strength prediction efficacy of a one-part geopolymer,ANN outperformed GEP.Sensitivity and parametric analysis were also performed to identify the significant contributor to strength.According to a sensitivity analysis,the activator and slag contents had the most effects on the compressive strength at 28 days.The water binder ratio was shown to be directly connected to activator percentage,slag percentage,and calcium hydroxide percentage and inversely related to compressive strength at 28 days and curing temperature.
文摘Purpose This scoping review aimed to offer researchers and practitioners an understanding of artificial intelligence(AI)applications in physical activity(PA)interventions;introduce them to prevalent machine learning(ML),deep learning(DL),and reinforcement learning(RL)algorithms;and encourage the adoption of AI methodologies.Methods A scoping review was performed in PubMed,Web of Science,Cochrane Library,and EBSCO focusing on AI applications for promoting PA or predicting related behavioral or health outcomes.AI methodologies were summarized and categorized to identify synergies,patterns,and trends informing future research.Additionally,a concise primer on predominant AI methodologies within the realm of PA was provided to bolster understanding and broader application.Results The review included 24 studies that met the predetermined eligibility criteria.AI models were found effective in detecting significant patterns of PA behavior and associations between specific factors and intervention outcomes.Most studies comparing AI models to traditional statistical approaches reported higher prediction accuracy for AI models on test data.Comparisons of different AI models yielded mixed results,likely due to model performance being highly dependent on the dataset and task.An increasing trend of adopting state-of-the-art DL and RL models over standard ML was observed,addressing complex human–machine communication,behavior modification,and decision-making tasks.Six key areas for future AI adoption in PA interventions emerged:personalized PA interventions,real-time monitoring and adaptation,integration of multimodal data sources,evaluation of intervention effectiveness,expanding access to PA interventions,and predicting and preventing injuries.Conclusion The scoping review highlights the potential of AI methodologies for advancing PA interventions.As the field progresses,staying informed and exploring emerging AI-driven strategies is essential for achieving significant improvements in PA interventions and fostering overall well-being.
基金supported by National Social Science Foundation Annual Project“Research on Evaluation and Improvement Paths of Integrated Development of Disabled Persons”(Grant No.20BRK029)the National Language Commission’s“14th Five-Year Plan”Scientific Research Plan 2023 Project“Domain Digital Language Service Resource Construction and Key Technology Research”(YB145-72)the National Philosophy and Social Sciences Foundation(Grant No.20BTQ065).
文摘Research on Chinese Sign Language(CSL)provides convenience and support for individuals with hearing impairments to communicate and integrate into society.This article reviews the relevant literature on Chinese Sign Language Recognition(CSLR)in the past 20 years.Hidden Markov Models(HMM),Support Vector Machines(SVM),and Dynamic Time Warping(DTW)were found to be the most commonly employed technologies among traditional identificationmethods.Benefiting from the rapid development of computer vision and artificial intelligence technology,Convolutional Neural Networks(CNN),3D-CNN,YOLO,Capsule Network(CapsNet)and various deep neural networks have sprung up.Deep Neural Networks(DNNs)and their derived models are integral tomodern artificial intelligence recognitionmethods.In addition,technologies thatwerewidely used in the early days have also been integrated and applied to specific hybrid models and customized identification methods.Sign language data collection includes acquiring data from data gloves,data sensors(such as Kinect,LeapMotion,etc.),and high-definition photography.Meanwhile,facial expression recognition,complex background processing,and 3D sign language recognition have also attracted research interests among scholars.Due to the uniqueness and complexity of Chinese sign language,accuracy,robustness,real-time performance,and user independence are significant challenges for future sign language recognition research.Additionally,suitable datasets and evaluation criteria are also worth pursuing.
基金National Natural Science Foundation of China(82274265 and 82274588)Hunan University of Traditional Chinese Medicine Research Unveiled Marshal Programs(2022XJJB003).
文摘Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications.
文摘Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take care of something called the generalization of the neural network. The performance of Artificial Neural Networks (ANN) mostly depends upon its generalization capability. In this paper, we propose an innovative approach to enhance the generalization capability of artificial neural networks (ANN) using structural redundancy. A novel perspective on handling input data prototypes and their impact on the development of generalization, which could improve to ANN architectures accuracy and reliability is described.
基金Project supported in part by the National Key Research and Development Program of China(Grant No.2021YFA0716400)the National Natural Science Foundation of China(Grant Nos.62225405,62150027,61974080,61991443,61975093,61927811,61875104,62175126,and 62235011)+2 种基金the Ministry of Science and Technology of China(Grant Nos.2021ZD0109900 and 2021ZD0109903)the Collaborative Innovation Center of Solid-State Lighting and Energy-Saving ElectronicsTsinghua University Initiative Scientific Research Program.
文摘AI development has brought great success to upgrading the information age.At the same time,the large-scale artificial neural network for building AI systems is thirsty for computing power,which is barely satisfied by the conventional computing hardware.In the post-Moore era,the increase in computing power brought about by the size reduction of CMOS in very large-scale integrated circuits(VLSIC)is challenging to meet the growing demand for AI computing power.To address the issue,technical approaches like neuromorphic computing attract great attention because of their feature of breaking Von-Neumann architecture,and dealing with AI algorithms much more parallelly and energy efficiently.Inspired by the human neural network architecture,neuromorphic computing hardware is brought to life based on novel artificial neurons constructed by new materials or devices.Although it is relatively difficult to deploy a training process in the neuromorphic architecture like spiking neural network(SNN),the development in this field has incubated promising technologies like in-sensor computing,which brings new opportunities for multidisciplinary research,including the field of optoelectronic materials and devices,artificial neural networks,and microelectronics integration technology.The vision chips based on the architectures could reduce unnecessary data transfer and realize fast and energy-efficient visual cognitive processing.This paper reviews firstly the architectures and algorithms of SNN,and artificial neuron devices supporting neuromorphic computing,then the recent progress of in-sensor computing vision chips,which all will promote the development of AI.
基金supported by British Heart Foundation Accelerator Award,UK(AA/18/3/34220)Royal Society International Exchanges Cost Share Award,UK(RP202G0230)+7 种基金Hope Foundation for Cancer Research,UK(RM60G0680)Medical Research Council Confidence in Concept Award,UK(MC_PC_17171)Sino-UK Industrial Fund,UK(RP202G0289)Global Challenges Research Fund(GCRF),UK(P202PF11)LIAS Pioneering Partnerships award,UK(P202ED10)Data Science Enhancement Fund,UK(P202RE237)Fight for Sight,UK(24NN201)Sino-UK Education Fund,UK(OP202006).
文摘Over the years,the continuous development of new technology has promoted research in the field of posture recognition and also made the application field of posture recognition have been greatly expanded.The purpose of this paper is to introduce the latest methods of posture recognition and review the various techniques and algorithms of posture recognition in recent years,such as scale-invariant feature transform,histogram of oriented gradients,support vectormachine(SVM),Gaussian mixturemodel,dynamic time warping,hiddenMarkovmodel(HMM),lightweight network,convolutional neural network(CNN).We also investigate improved methods of CNN,such as stacked hourglass networks,multi-stage pose estimation networks,convolutional posemachines,and high-resolution nets.The general process and datasets of posture recognition are analyzed and summarized,and several improved CNNmethods and threemain recognition techniques are compared.In addition,the applications of advanced neural networks in posture recognition,such as transfer learning,ensemble learning,graph neural networks,and explainable deep neural networks,are introduced.It was found that CNN has achieved great success in posture recognition and is favored by researchers.Still,a more in-depth research is needed in feature extraction,information fusion,and other aspects.Among classification methods,HMM and SVM are the most widely used,and lightweight network gradually attracts the attention of researchers.In addition,due to the lack of 3Dbenchmark data sets,data generation is a critical research direction.
基金the National Key R&D Program of China(No.2017YFA0700500)the National Natural Science Foundation of China(No.62172202)+1 种基金the Experiment Project of ChinaManned Space Program(No.HYZHXM01019)the Fundamental Research Funds for the Central Universities from Southeast University(No.3207032101C3).
文摘In modern terminology,“organoids”refer to cells that grow in a specific three-dimensional(3D)environment in vitro,sharing similar structures with their source organs or tissues.Observing themorphology or growth characteristics of organoids through a microscope is a commonly used method of organoid analysis.However,it is difficult,time-consuming,and inaccurate to screen and analyze organoids only manually,a problem which cannot be easily solved with traditional technology.Artificial intelligence(AI)technology has proven to be effective in many biological and medical research fields,especially in the analysis of single-cell or hematoxylin/eosin stained tissue slices.When used to analyze organoids,AI should also provide more efficient,quantitative,accurate,and fast solutions.In this review,we will first briefly outline the application areas of organoids and then discuss the shortcomings of traditional organoid measurement and analysis methods.Secondly,we will summarize the development from machine learning to deep learning and the advantages of the latter,and then describe how to utilize a convolutional neural network to solve the challenges in organoid observation and analysis.Finally,we will discuss the limitations of current AI used in organoid research,as well as opportunities and future research directions.
基金This work was supported in part by the RHB-UKM Endowment Fund through Dana Endowmen RHB-UKM under Grant RHB-UKM-2021-001in part by the Universiti Kebangsaan Malaysia through the Dana Padanan Kolaborasi under Grant DPK-2021-012.
文摘A well-managed financial market of stocks,commodities,derivatives,and bonds is crucial to a country’s economic growth.It provides confidence to investors,which encourages the inflow of cash to ensure good market liquidity.However,there will always be a group of traders that aims to manipulate market pricing to negatively influence stock values in their favor.These illegal trading activities are surely prohibited according to the rules and regulations of every country’s stockmarket.It is the role of regulators to detect and prevent any manipulation cases in order to provide a trading platform that is fair and efficient.However,the complexity of manipulation cases has increased significantly,coupled with high trading volumes,which makes the manual observations of such cases by human operators no longer feasible.As a result,many intelligent systems have been developed by researchers all over the world to automatically detect various types of manipulation cases.Therefore,this review paper aims to comprehensively discuss the state-of-theart methods that have been developed to detect and recognize stock market manipulation cases.It also provides a concise definition of manipulation taxonomy,including manipulation types and categories,as well as some of the output of early experimental research.In summary,this paper provides a thorough review of the automated methods for detecting stock market manipulation cases.
基金support for the research,authorship,and/or publication of this article.
文摘Overconfidence behavior,one form of positive illusion,has drawn considerable attention throughout history because it is viewed as the main reason for many crises.Investors’overconfidence,which can be observed as overtrading following positive returns,may lead to inefficiencies in stock markets.To the best of our knowledge,this is the first study to examine the presence of investor overconfidence by employing an artificial intelligence technique and a nonlinear approach to impulse responses to analyze the impact of different return regimes on the overconfidence attitude.We examine whether investors in an emerging stock market(Borsa Istanbul)exhibit overconfidence behavior using a feed-forward,neural network,nonlinear Granger causality test and nonlinear impulseresponse functions based on local projections.These are the first applications in the relevant literature due to the novelty of these models in forecasting high-dimensional,multivariate time series.The results obtained from distinguishing between the different market regimes to analyze the responses of trading volume to return shocks contradict those in the literature,which is the key contribution of the study.The empirical findings imply that overconfidence behavior exhibits asymmetries in different return regimes and is persistent during the 20-day forecasting horizon.Overconfidence is more persistent in the low-than in the high-return regime.In the negative interest-rate period,a high-return regime induces overconfidence behavior,whereas in the positive interest-rate period,a low-return regime induces overconfidence behavior.Based on the empirical findings,investors should be aware that portfolio gains may result in losses depending on aggressive and excessive trading strategies,particularly in low-return regimes.
基金supported by science and technology projects of Gansu State Grid Corporation of China(52272220002U).
文摘Optical Character Recognition(OCR)refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image.This paper is a deep study on the recognition effect of OCR based on Artificial Intelligence(AI)algorithms,in which the different AI algorithms for OCR analysis are classified and reviewed.Firstly,the mechanisms and characteristics of artificial neural network-based OCR are summarized.Secondly,this paper explores machine learning-based OCR,and draws the conclusion that the algorithms available for this form of OCR are still in their infancy,with low generalization and fixed recognition errors,albeit with better recognition effect and higher recognition accuracy.Finally,this paper explores several of the latest algorithms such as deep learning and pattern recognition algorithms.This paper concludes that OCR requires algorithms with higher recognition accuracy.
文摘The varieties and capabilities of artificial intelligence and machine learning in orthopedic surgery are extensively expanding.One promising method is neural networks,emphasizing big data and computer-based learning systems to develop a statistical fracture-detecting model.It derives patterns and rules from outstanding amounts of data to analyze the probabilities of different outcomes using new sets of similar data.The sensitivity and specificity of machine learning in detecting fractures vary from previous studies.AI may be most promising in the diagnosis of less-obvious fractures that are more commonly missed.Future studies are necessary to develop more accurate and effective detection models that can be used clinically.
文摘To transition from conventional to intelligent real estate, the real estate industry must enhance its embrace of disruptive technology. Even though the real estate auction market has grown in importance in the financial, economic, and investment sectors, few artificial intelligence-based research has tried to predict the auction values of real estate in the past. According to the objectives of this research, artificial intelligence and statistical methods will be used to create forecasting models for real estate auction prices. A multiple regression model and an artificial neural network are used in conjunction with one another to build the forecasting models. For the empirical study, the study utilizes data from Ghana apartment auctions from 2016 to 2020 to anticipate auction prices and evaluate the forecasting accuracy of the various models available at the time. Compared to the conventional Multiple Regression Analysis, using artificial intelligence systems for real estate appraisal is becoming a more viable option (MRA). The Artificial Neural network model exhibits the most outstanding performance, and efficient zonal segmentation based on the auction evaluation price enhances the model’s prediction accuracy even more. There is a statistically significant difference between the two models when it comes to forecasting the values of real estate auctions.
文摘Artificial intelligence(AI) using deep-learning(DL) has emerged as a breakthrough computer technology. By the era of big data, the accumulation of an enormous number of digital images and medical records drove the need for the utilization of AI to efficiently deal with these data, which have become fundamental resources for a machine to learn by itself. Among several DL models, the convolutional neural network showed outstanding performance in image analysis. In the field of gastroenterology, physicians handle large amounts of clinical data and various kinds of image devices such as endoscopy and ultrasound. AI has been applied in gastroenterology in terms of diagnosis,prognosis, and image analysis. However, potential inherent selection bias cannot be excluded in the form of retrospective study. Because overfitting and spectrum bias(class imbalance) have the possibility of overestimating the accuracy,external validation using unused datasets for model development, collected in a way that minimizes the spectrum bias, is mandatory. For robust verification,prospective studies with adequate inclusion/exclusion criteria, which represent the target populations, are needed. DL has its own lack of interpretability.Because interpretability is important in that it can provide safety measures, help to detect bias, and create social acceptance, further investigations should be performed.
基金the National Natural Science Foundation of China (91646102, L1724034, L16240452, L1524015, and 20905027)the MOE (Ministry of Education in China) Project of Humanities and Social Sciences (16JDGC011)+3 种基金the Chinese Academy of Engineering’s China Knowledge Center for Engineering Sciences and Technology Project (CKCEST-2018-1-13)the UK– China Industry Academia Partnership Programme (UK-CIAPP/260)Volvo-Supported Green Economy and Sustainable Development at Tsinghua University (20153000181)the Tsinghua Initiative Research Project (2016THZW).
文摘It is essential to utilize deep-learning algorithms based on big data for the implementation of the new generation of artificial intelligence. Effective utilization of deep learning relies considerably on the number of labeled samples, which restricts the application of deep learning in an environment with a small sample size. In this paper, we propose an approach based on a generative adversarial network (GAN) combined with a deep neural network (DNN). First, the original samples were divided into a training set and a test set. The GAN was trained with the training set to generate synthetic sample data, which enlarged the training set. Next, the DNN classifier was trained with the synthetic samples. Finally, the classifier was tested with the test set, and the effectiveness of the approach for multi-classification with a small sample size was validated by the indicators. As an empirical case, the approach was then applied to identify the stages of cancers with a small labeled sample size. The experimental results verified that the proposed approach achieved a greater accuracy than traditional methods. This research was an attempt to transform the classical statistical machine-learning classification method based on original samples into a deep-learning classification method based on data augmentation. The use of this approach will contribute to an expansion of application scenarios for the new generation of artificial intelligence based on deep learning, and to an increase in application effectiveness. This research is also expected to contribute to the comprehensive promotion of new-generation artificial intelligence.
文摘Geotechnical engineering deals with materials(e.g. soil and rock) that, by their very nature, exhibit varied and uncertain behavior due to the imprecise physical processes associated with the formation of these materials. Modeling the behavior of such materials in geotechnical engineering applications is complex and sometimes beyond the ability of most traditional forms of physically-based engineering methods. Artificial intelligence(AI) is becoming more popular and particularly amenable to modeling the complex behavior of most geotechnical engineering applications because it has demonstrated superior predictive ability compared to traditional methods. This paper provides state-of-the-art review of some selected AI techniques and their applications in pile foundations, and presents the salient features associated with the modeling development of these AI techniques. The paper also discusses the strength and limitations of the selected AI techniques compared to other available modeling approaches.
基金This work was supported by the Ghana National Petroleum Corporation(GNPC)through the GNPC Professorial Chair in Mining Engineering at the University of Mines and Technology(UMaT),GhanaThe authors thank the Ghana National Petroleum Corporation(GNPC)for providing funding to support this work through the GNPC Professorial Chair in Mining Engineering at the University of Mines and Technology(UMaT),Ghana.
文摘Blasting is the live wire of mining and its operations,with air overpressure(AOp)recognised as an end product of blasting.AOp is known to be one of the most important environmental hazards of mining.Further research in this area of mining is required to help improve on safety of the working environment.Review of previous studies has shown that many empirical and artificial intelligence(AI)methods have been proposed as a forecasting model.As an alternative to the previous methods,this study proposes a new class of advanced artificial neural network known as brain inspired emotional neural network(BIENN)to predict AOp.The proposed BI-ENN approach is compared with two classical AOp predictors(generalised predictor and McKenzie formula)and three established AI methods of backpropagation neural network(BPNN),group method of data handling(GMDH),and support vector machine(SVM).From the analysis of the results,BI-ENN is the best by achieving the least RMSE,MAPE,NRMSE and highest R,VAF and PI values of 1.0941,0.8339%,0.1243%,0.8249,68.0512%and 1.2367 respectively and thus can be used for monitoring and controlling AOp.