期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Performance prediction of gravity concentrator by using artificial neural network-a case study 被引量:3
1
作者 Panda Lopamudra Tripathy Sunil Kumar 《International Journal of Mining Science and Technology》 SCIE EI 2014年第4期461-465,共5页
In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation ... In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation along with performance prediction of the unit operation is necessary for efficient recovery.So, in this present study, an artificial neural network(ANN) modeling approach was attempted for predicting the performance of wet shaking table in terms of grade(%) and recovery(%). A three layer feed forward neural network(3:3–11–2:2) was developed by varying the major operating parameters such as wash water flow rate(L/min), deck tilt angle(degree) and slurry feed rate(L/h). The predicted value obtained by the neural network model shows excellent agreement with the experimental values. 展开更多
关键词 Chromite artificial neural network Wet shaking table Performance prediction Back propagation algorithm
下载PDF
Recovery and grade prediction of pilot plant flotation column concentrate by a hybrid neural genetic algorithm 被引量:6
2
作者 F. Nakhaei M.R. Mosavi A. Sam 《International Journal of Mining Science and Technology》 SCIE EI 2013年第1期69-77,共9页
Today flotation column has become an acceptable means of froth flotation for a fairly broad range of applications, in particular the cleaning of sulfides. Even after having been used for several years in mineral proce... Today flotation column has become an acceptable means of froth flotation for a fairly broad range of applications, in particular the cleaning of sulfides. Even after having been used for several years in mineral processing plants, the full potential of the flotation column process is still not fully exploited. There is no prediction of process performance for the complete use of available control capabilities. The on-line estimation of grade usually requires a significant amount of work in maintenance and calibration of on-stream analyzers, in order to maintain good accuracy and high availability. These difficulties and the high cost of investment and maintenance of these devices have encouraged the approach of prediction of metal grade and recovery. In this paper, a new approach has been proposed for metallurgical performance prediction in flotation columns using Artificial Neural Network (ANN). Despite of the wide range of applications and flexibility of NNs, there is still no general framework or procedure through which the appropriate network for a specific task can be designed. Design and structural optimization of NNs is still strongly dependent upon the designer's experience. To mitigate this problem, a new method for the auto-design of NNs was used, based on Genetic Algorithm (GA). The new proposed method was evaluated by a case study in pilot plant flotation column at Sarcheshmeh copper plant. The chemical reagents dosage, froth height, air, wash water flow rates, gas holdup, Cu grade in the rougher feed, flotation column feed, column tail and final concentrate streams were used to the simulation by GANN. In this work, multi-layer NNs with Back Propagation (BP) algorithm with 8-17-10-2 and 8- 13-6-2 arrangements have been applied to predict the Cu and Mo grades and recoveries, respectively. The correlation coefficient (R) values for the testing sets for Cu and Mo grades were 0.93, 0.94 and for their recoveries were 0.93, 0.92, respectively. The results discussed in this paper indicate that the proposed model can be used to predict the Cu and Mo grades and recoveries with a reasonable error. 展开更多
关键词 artificial neural network Genetic algorithm Flotation column Grade Recovery prediction
下载PDF
High-resolution peak demand estimation using generalized additive models and deep neural networks
3
作者 Jonathan Berrisch Michal Narajewski Florian Ziel 《Energy and AI》 2023年第3期3-13,共11页
This paper covers predicting high-resolution electricity peak demand features given lower-resolution data.This is a relevant setup as it answers whether limited higher-resolution monitoring helps to estimate future hi... This paper covers predicting high-resolution electricity peak demand features given lower-resolution data.This is a relevant setup as it answers whether limited higher-resolution monitoring helps to estimate future high-resolution peak loads when the high-resolution data is no longer available.That question is particularly interesting for network operators considering replacing high-resolution monitoring by predictive models due to economic considerations.We propose models to predict half-hourly minima and maxima of high-resolution(every minute)electricity load data while model inputs are of a lower resolution(30 min).We combine predictions of generalized additive models(GAM)and deep artificial neural networks(DNN),which are popular in load forecasting.We extensively analyze the prediction models,including the input parameters’importance,focusing on load,weather,and seasonal effects.The proposed method won a data competition organized by Western Power Distribution,a British distribution network operator.In addition,we provide a rigorous evaluation study that goes beyond the competition frame to analyze the models’robustness.The results show that the proposed methods are superior to the competition benchmark concerning the out-of-sample root mean squared error(RMSE).This holds regarding the competition month and the supplementary evaluation study,which covers an additional eleven months.Overall,our proposed model combination reduces the out-of-sample RMSE by 57.4%compared to the benchmark. 展开更多
关键词 Electricity peak load Generalized additive models artificial neural networks prediction Combination Weather effects Seasonality
原文传递
Strength Prediction of Aluminum–Stainless Steel-Pulsed TIG Welding–Brazing Joints with RSM and ANN 被引量:7
4
作者 Huan He Chunli Yang +2 位作者 Zhe Chen Sanbao Lin Chenglei Fan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第6期1012-1017,共6页
Pulsed TIG welding–brazing process was applied to join aluminum with stainless steel dissimilar metals. Major parameters that affect the joint property significantly were identified as pulsed peak current, base curre... Pulsed TIG welding–brazing process was applied to join aluminum with stainless steel dissimilar metals. Major parameters that affect the joint property significantly were identified as pulsed peak current, base current, pulse on time,and frequency by pre-experiments. A sample was established according to central composite design. Based on the sample,response surface methodology(RSM) and artificial neural networks(ANN) were employed to predict the tensile strength of the joints separately. With RSM, a significant and rational mathematical model was established to predict the joint strength.With ANN, a modified back-propagation algorithm consisting of one input layer with four neurons, one hidden layer with eight neurons, and one output layer with one neuron was trained for predicting the strength. Compared with RSM, average relative prediction error of ANN was /10% and it obtained more stable and precise results. 展开更多
关键词 Welding–brazing Aluminum Stainless steel Response surface methodology(RSM) artificial neural networks(ANN) prediction
原文传递
Prediction of effluent concentration in a wastewater treatment plant using machine learning models 被引量:6
5
作者 Hong Guo Kwanho Jeong +5 位作者 Jiyeon Lim Jeongwon Jo Young Mo Kim Jong-pyo Park Joon Ha Kim Kyung Hwa Cho 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第6期90-101,共12页
Of growing amount of food waste, the integrated food waste and waste water treatment was regarded as one of the efficient modeling method. However, the load of food waste to the conventional waste treatment process mi... Of growing amount of food waste, the integrated food waste and waste water treatment was regarded as one of the efficient modeling method. However, the load of food waste to the conventional waste treatment process might lead to the high concentration of total nitrogen(T-N) impact on the effluent water quality. The objective of this study is to establish two machine learning models-artificial neural networks(ANNs) and support vector machines(SVMs), in order to predict 1-day interval T-N concentration of effluent from a wastewater treatment plant in Ulsan, Korea. Daily water quality data and meteorological data were used and the performance of both models was evaluated in terms of the coefficient of determination(R^2), Nash-Sutcliff efficiency(NSE), relative efficiency criteria(d rel). Additionally, Latin-Hypercube one-factor-at-a-time(LH-OAT) and a pattern search algorithm were applied to sensitivity analysis and model parameter optimization, respectively. Results showed that both models could be effectively applied to the 1-day interval prediction of T-N concentration of effluent. SVM model showed a higher prediction accuracy in the training stage and similar result in the validation stage.However, the sensitivity analysis demonstrated that the ANN model was a superior model for 1-day interval T-N concentration prediction in terms of the cause-and-effect relationship between T-N concentration and modeling input values to integrated food waste and waste water treatment. This study suggested the efficient and robust nonlinear time-series modeling method for an early prediction of the water quality of integrated food waste and waste water treatment process. 展开更多
关键词 artificial neural network Support vector machine Effluent concentration prediction accuracy Sensitivity analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部