期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
Prediction of mechanical property of E4303 electrode using artificial neural network 被引量:3
1
作者 徐越兰 黄俊 王克鸿 《China Welding》 EI CAS 2004年第2期132-136,共5页
Based on the method of artificial neural network, a new approach has been devised to predict the mechanical property of E4303 electrode. The outlined predication model for determining the mechanical property of electr... Based on the method of artificial neural network, a new approach has been devised to predict the mechanical property of E4303 electrode. The outlined predication model for determining the mechanical property of electrode was built upon the production data. The research leverages a back propagation algorithm as the neural network’s learning rule. The result indicates that there are positive correlations between the predicted results and the practical production data. Hence, using the neural network, predication of electrode property can be realized. For the first time, this research provides a more scientific method for designing electrode. 展开更多
关键词 artificial neural network electrode design property prediction
下载PDF
Prediction of column failure modes based on artificial neural network 被引量:1
2
作者 Wan Haitao Qi Yongle +2 位作者 Zhao Tiejun Ren Wenjuan Fu Xiaoyan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第2期481-493,共13页
To implement the performance-based seismic design of engineered structures,the failure modes of members must be classified.The classification method of column failure modes is analyzed using data from the Pacific Eart... To implement the performance-based seismic design of engineered structures,the failure modes of members must be classified.The classification method of column failure modes is analyzed using data from the Pacific Earthquake Engineering Research Center(PEER).The main factors affecting failure modes of columns include the hoop ratios,longitudinal reinforcement ratios,ratios of transverse reinforcement spacing to section depth,aspect ratios,axial compression ratios,and flexure-shear ratios.This study proposes a data-driven prediction model based on an artificial neural network(ANN)to identify the column failure modes.In this study,111 groups of data are used,out of which 89 are used as training data and 22 are used as test data,and the ANN prediction model of failure modes is developed.The results show that the proposed method based on ANN is superior to traditional methods in identifying the column failure modes. 展开更多
关键词 performance-based seismic design failure mode COLUMN artificial neural network prediction model
下载PDF
Comparison of Response Surface Methodology and Artificial Neural Network in Predicting the Microwave-Assisted Extraction Procedure to Determine Zinc in Fish Muscles 被引量:4
3
作者 Mansour Ghaffari Moghaddam Mostafa Khajeh 《Food and Nutrition Sciences》 2011年第8期803-808,共6页
In this paper, the estimation capacities of the response surface methodology (RSM) and artificial neural network (ANN), in a microwave-assisted extraction method to determine the amount of zinc in fish samples were in... In this paper, the estimation capacities of the response surface methodology (RSM) and artificial neural network (ANN), in a microwave-assisted extraction method to determine the amount of zinc in fish samples were investigated. The experiments were carried out based on a 3-level, 4-variable Box–Behnken design. The amount of zinc was considered as a function of four independent variables, namely irradiation power, irradiation time, nitric acid concentration, and temperature. The RSM results showed the quadratic polynomial model can be used to describe the relationship between the various factors and the response. Using the ANN analysis, the optimal configuration of the ANN model was found to be 4-10-1. After predicting the model using RSM and ANN, two methodologies were then compared for their predictive capabilities. The results showed that the ANN model is much more accurate in prediction as compared to the RSM. 展开更多
关键词 artificial neural network Response Surface Methodology Box-Behnken design MICROWAVE-ASSISTED Extraction PREDICTIVE CAPABILITY
下载PDF
Investigation of Optimal Megnetic Properties in NdFeB Magnets by Artificial Neural Network
4
作者 Lian Lixian Liu Ying Hu Wang Hou Tinghong Gao Shengji Tu Mingjing 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第z1期57-62,共6页
In order to study the effect of alloy component on magnetic properties of NdFeB magnets, the experiment schemes are carried out by the uniform design theory, and the relationship between the component and the magnetic... In order to study the effect of alloy component on magnetic properties of NdFeB magnets, the experiment schemes are carried out by the uniform design theory, and the relationship between the component and the magnetic properties is established by artificial neural network(ANN) predicting model.The element contents of alloys are optimized by the ANN model.Meanwhile, the influences of mono-factor or multi-factor interaction on alloy magnetic properties are respectively discussed according to the curves ploted by ANN model.Simulation result shows that the predicted and measured results are in good agreement.The relative error is every low, the error is not more than 1.68% for remanence Br, 1.56% for maximal energy product (BH)m, and 7.73% for coercivity Hcj.Hcj can be obviously improved and Br can be reduced by increasing Nd or Zr content.Co and B have advantageous effects on increasing Br and disadvantageous effects on increasing Hcj.Influence of alloying elements on Hcj and Br are inverse, and the interaction among the alloying elements play an important role in the magnetic properties of NdFeB magnets.The ANN prediction model presents a new approach to investigate the nonlinear relationship between the component and the magnetic properties of NdFeB alloys. 展开更多
关键词 metal materials artificial neural network UNIFORM design NDFEB magnetic PROPERTIES RARE earths
下载PDF
STUDY ON PROPERTY PREDICTION FOR SEALING ALLOYS
5
作者 Z.N. Xia S.G. Lai Y.Z.Sun and Y.W. Lu(Department of Materials Science and Engineering,Tsinghua University, Beijing 100084, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第4期307-309,共3页
This paper describes a model of property prediction for alloys using the mapping function and self-learning ability of artificial neural network. By learning from experimental data, the neural network induces the rela... This paper describes a model of property prediction for alloys using the mapping function and self-learning ability of artificial neural network. By learning from experimental data, the neural network induces the relationship between composition, processing and properties of alloys, and predicts the properties with given composition and processing parameters of new alloys.The verification of sealing alloys demonstrates that the artificial neural network is an effective method for materials design and properties prediction. 展开更多
关键词 property prediction artificial neural network sealing alloy
下载PDF
Neural network-based model for prediction of permanent deformation of unbound granular materials
6
作者 Ali Alnedawi Riyadh Al-Ameri Kali Prasad Nepal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第6期1231-1242,共12页
Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,... Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,there are limited regression models capable of predicting the PD under multistress levels,and these models have regression limitations and generally fail to cover the complexity of UGM behaviour.Recent researches are focused on using new methods of computational intelligence systems to address the problems,such as artificial neural network(ANN).In this context,we aim to develop an artificial neural model to predict the PD of UGMs exposed to repeated loads.Extensive repeated load triaxial tests(RLTTs)were conducted on base and subbase materials locally available in Victoria,Australia to investigate the PD properties of the tested materials and to prepare the database of the neural networks.Specimens were prepared over different moisture contents and gradations to cover a wide testing matrix.The ANN model consists of one input layer with five neurons,one hidden layer with twelve neurons,and one output layer with one neuron.The five inputs were the number of load cycles,deviatoric stress,moisture content,coefficient of uniformity,and coefficient of curvature.The sensitivity analysis showed that the most important indicator that impacts PD is the number of load cycles with influence factor of 41%.It shows that the ANN method is rapid and efficient to predict the PD,which could be implemented in the Austroads pavement design method. 展开更多
关键词 Flexible PAVEMENT design Unbound GRANULAR materials PERMANENT deformation (PD) Repeated load TRIAXIAL test (RLTT) prediction models artificial neural network (ANN)
下载PDF
Classification and Prediction on Rural Property Mortgage Data with Three Data Mining Methods
7
作者 Kaixi Zhang Yingpeng Hu Yanghui Wu 《Journal of Software Engineering and Applications》 2018年第7期348-361,共14页
The Farmers Property Mortgage Policy is a strategic financial policy in western China, a relatively underdeveloped region. Many contradictions and conflicts exist in the process between the strong demand for the loans... The Farmers Property Mortgage Policy is a strategic financial policy in western China, a relatively underdeveloped region. Many contradictions and conflicts exist in the process between the strong demand for the loans by farmers and the strict risk control by the financial institutions. The rural finance corporations should use scientific analysis and investigation of the potential households for overall evaluation of the customers. These include historical credit rating, present family situation, and other related information. Three different data mining methods were applied in this paper to the specifically-collected household data. The objective was to study which factor could be the most important in determining loan demand for households, and in the meanwhile, to classify and predict the possibility of loan demand for the potential customers. The results obtained from the three methods indicated the similar outputs, income level, land area, the way of loan, and the understanding of policy were four main factors which decided the probability of one specific farmer applying for a credit loan. The results also embodied the difference within the three methods for classifying and predicting the loan anticipation for the testing households. The artificial neural network model had the highest accuracy of 91.4 which is better than the other two methods. 展开更多
关键词 RURAL property MORTGAGE BAYESIAN network artificial neural network LOGISTIC Regression Classification and prediction
下载PDF
人工神经元网络模型预测3D打印部件力学性能的研究
8
作者 吕志敏 江豪 《塑料工业》 CAS CSCD 北大核心 2024年第1期59-66,100,共9页
熔融沉积成型(FDM)是一种高效的增材制造技术。将响应面模型与人工神经元网络(ANN)模型相结合,研究了FDM工艺的喷嘴温度、层高和层积角度对尼龙12(PA12)丝材制造部件力学性能的影响。当喷嘴温度、层高和层积角度分别在220~260℃、0.2~0.... 熔融沉积成型(FDM)是一种高效的增材制造技术。将响应面模型与人工神经元网络(ANN)模型相结合,研究了FDM工艺的喷嘴温度、层高和层积角度对尼龙12(PA12)丝材制造部件力学性能的影响。当喷嘴温度、层高和层积角度分别在220~260℃、0.2~0.4 mm、0°~90°之间变化时,部件拉伸强度和缺口冲击强度分别在35.69~60.89 MPa和5.48~19.83 kJ/m^(2)之间。喷嘴温度、层高、层积角度以及层积角度的二阶效应是影响部件拉伸强度的显著因素;喷嘴温度、层积角度以及层积角度的二阶效应是影响缺口冲击强度的显著因素。ANN模型预测拉伸强度和缺口冲击强度的最优结构分别是3-10-5-1和3-25-24-1,预测的拉伸强度和缺口冲击强度均方误差函数(MSE)最低分别为2.54×10^(-4)和2.07×10^(-4),回归系数均在0.97以上。与响应面的二次回归模型相比,ANN模型预测的拉伸强度和缺口冲击强度与实验值的标准偏差分别为0.46和0.32,远低于二次回归模型的2.43和1.58,更适合于优化非线性的FDM工艺。 展开更多
关键词 3D打印 熔融沉积成型 人工神经元网络 预测 力学性能
下载PDF
Total Transmission from Deep Learning Designs
9
作者 Bei Wu Zhan-Lei Hao +3 位作者 Jin-Hui Chen Qiao-Liang Bao Yi-Neng Liu Huan-Yang Chen 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第1期9-19,共11页
Total transmission plays an important role in efficiency improvement and wavefront control,and has made great progress in many applications,such as the optical film and signal transmission.Therefore,many traditional p... Total transmission plays an important role in efficiency improvement and wavefront control,and has made great progress in many applications,such as the optical film and signal transmission.Therefore,many traditional physical methods represented by transformation optics have been studied to achieve total transmission.However,these methods have strict limitations on the size of the photonic structure,and the calculation is complex.Here,we exploit deep learning to achieve this goal.In deep learning,the data-driven prediction and design are carried out by artificial neural networks(ANNs),which provide a convenient architecture for large dataset problems.By taking the transmission characteristic of the multi-layer stacks as an example,we demonstrate how optical materials can be designed by using ANNs.The trained network directly establishes the mapping from optical materials to transmission spectra,and enables the forward spectral prediction and inverse material design of total transmission in the given parameter space.Our work paves the way for the optical material design with special properties based on deep learning. 展开更多
关键词 artificial neural networks(ANNs) deep learning forward spectral prediction inverse material design total transmission
下载PDF
人工神经网络在材料加工中的应用及展望
10
作者 杨西荣 权强强 +3 位作者 田倩炆 刘晓燕 罗雷 王敬忠 《中国材料进展》 CAS CSCD 北大核心 2023年第11期896-901,共6页
随着计算机技术的发展,“材料基因组计划”的推行促进了数据驱动技术在材料加工中的应用发展。人工神经网络因具有自学习、信息存储、联想记忆及高速寻求最优解等能力而广泛应用于材料设计、材料性能预测、工艺条件最优参数确定等材料... 随着计算机技术的发展,“材料基因组计划”的推行促进了数据驱动技术在材料加工中的应用发展。人工神经网络因具有自学习、信息存储、联想记忆及高速寻求最优解等能力而广泛应用于材料设计、材料性能预测、工艺条件最优参数确定等材料科学技术研究方面,改变了传统上采用“试错法”进行的实验研究。综述了人工神经网络的基本理论及发展历程,对其在国内外在材料性能预测、材料设计优化和相变规律预测3个方面的应用发展进行了概括性总结,探究了人工神经网络在材料加工方面存在的不足,并对其未来的发展进行了展望。 展开更多
关键词 人工神经网络 材料加工 性能预测 材料设计 相变规律
下载PDF
基于Attention-ResNet-LSTM混合神经网络的盾构掘进速度预测新方法
11
作者 高昆 于思淏 +1 位作者 许维青 张子新 《隧道建设(中英文)》 CSCD 北大核心 2023年第4期592-601,共10页
针对传统方法存在的盾构性能精准预测阻碍盾构快速掘进技术发展的难题,提出一种基于Attention-ResNet-LSTM混合神经网络的盾构掘进速度预测方法。相比传统的LSTM、GRU等网络预测模型,Attention-ResNet-LSTM模型引入了Attention机制。长... 针对传统方法存在的盾构性能精准预测阻碍盾构快速掘进技术发展的难题,提出一种基于Attention-ResNet-LSTM混合神经网络的盾构掘进速度预测方法。相比传统的LSTM、GRU等网络预测模型,Attention-ResNet-LSTM模型引入了Attention机制。长距离盾构掘进过程中,针对地层条件存在很大的变异性情况,该模型可自适应更新权重矩阵,让模型面对不同的任务时具有一定的自调节能力,可有效提升预测精度。依托中俄东线天然气管道工程对盾构掘进速度进行了实时预测和验证,且结果表明该方法可分析盾构掘进过程中输入、输出参数之间的相关性,且具有较好的适应性。 展开更多
关键词 盾构隧道 人工智能 混合神经网络 性能预测 掘进速度
下载PDF
人工神经网络在材料开发中的应用研究进展
12
作者 于志省 李应成 +4 位作者 王宇遥 沈志刚 白瑜 苏智青 王洪学 《工程塑料应用》 CAS CSCD 北大核心 2023年第2期158-164,共7页
介绍了人工神经网络(ANN)的发展历程、模型特性与分类,以及反向传播(BP)神经网络模型及其改进算法,重点论述了ANN在高分子聚合反应过程和质量控制、成型加工工艺设计与条件优化、材料使用与服役性能预测方面的应用进展,以及在辅助性能... 介绍了人工神经网络(ANN)的发展历程、模型特性与分类,以及反向传播(BP)神经网络模型及其改进算法,重点论述了ANN在高分子聚合反应过程和质量控制、成型加工工艺设计与条件优化、材料使用与服役性能预测方面的应用进展,以及在辅助性能表征与分析等方面的应用研究状况,并指出了ANN在未来新材料开发中应用的发展方向和亟待解决的问题。 展开更多
关键词 人工神经网络 反向传播网络 质量控制 性能预测 优化设计 新材料开发
下载PDF
人工神经网络在石油分析中的应用研究(Ⅰ)——BP神经网络预测石油馏分临界性质 被引量:9
13
作者 周山花 张晓彤 +2 位作者 张素萍 孙兆林 李梦龙 《石油化工高等学校学报》 CAS 1998年第1期23-27,共5页
基于面向对象程序设计的设计思想,定义3种新的神经元结构体类型变量,研究了4种变形BP神经网络模型,引入神经元非线性敏感度因子、动量因子和阈值的动态修正,在一定程度上克服了传统BP网络收敛速度慢、易陷于局部极小的缺陷,... 基于面向对象程序设计的设计思想,定义3种新的神经元结构体类型变量,研究了4种变形BP神经网络模型,引入神经元非线性敏感度因子、动量因子和阈值的动态修正,在一定程度上克服了传统BP网络收敛速度慢、易陷于局部极小的缺陷,将4种模型应用于石油馏分临界性质的预测,取得较一般常规非线性处理方法更高的预测精度。 展开更多
关键词 人工神经网络 石油馏分 临界性质 预测 石油分析
下载PDF
基于参数优化的人工神经网络的AZ31镁合金力学性能预测模型 被引量:10
14
作者 刘彬 汤爱涛 +2 位作者 潘复生 黄光杰 毛建军 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第3期44-49,共6页
通过力学性能试验测定了不同退火条件下AZ31镁合金的抗拉强度、屈服强度和延伸率,并利用人工神经网络技术建立了对应力学性能的预测模型,其中对模型的优化采用了一种新方法,即参数全排列组合训练。结果表明,基于全排列训练得到的最优参... 通过力学性能试验测定了不同退火条件下AZ31镁合金的抗拉强度、屈服强度和延伸率,并利用人工神经网络技术建立了对应力学性能的预测模型,其中对模型的优化采用了一种新方法,即参数全排列组合训练。结果表明,基于全排列训练得到的最优参数建立的网络模型具有优良的性能,比经传统试探法构建的模型具有更高的平均相关系数和更低的平均误差,因此能更准确地预测AZ31镁合金在不同退火条件后的力学性能。 展开更多
关键词 镁合金 力学性能 人工神经网络 预测模型 全排列组合训练
下载PDF
热轧带钢力学性能预测模型及其应用 被引量:13
15
作者 王丹民 李华德 +1 位作者 周建龙 梅兵 《北京科技大学学报》 EI CAS CSCD 北大核心 2006年第7期687-690,共4页
为实现对热轧带钢的屈服强度、抗拉强度、断裂延伸率等力学性能的预测及控制,利用人工神经网络技术,分别建立了根据生产工艺参数预测力学性能的质量模型,以及根据力学性能要求对生产工艺参数进行优化的逆质量控制模型.利用质量预测模型... 为实现对热轧带钢的屈服强度、抗拉强度、断裂延伸率等力学性能的预测及控制,利用人工神经网络技术,分别建立了根据生产工艺参数预测力学性能的质量模型,以及根据力学性能要求对生产工艺参数进行优化的逆质量控制模型.利用质量预测模型,分析得出屈服强度随卷取温度的上升而下降的变化规律,进而可以对组织性能进行在线调整,实现在线应用. 展开更多
关键词 热轧带钢 力学性能 质量预测 神经网络
下载PDF
人工神经网络在玻璃配方设计中的应用研究 被引量:5
16
作者 肖卓豪 卢安贤 +1 位作者 刘树江 杨舟 《材料导报》 EI CAS CSCD 北大核心 2005年第6期17-19,31,共4页
应用人工神经网络技术,采用 Neuralworks Predict 软件建立 BP 网络模型,通过对 R_2O-MO-Al_2O_3-SiO_2系统玻璃组成与热膨胀系数关系实验数据的训练,以期能预测该系统指定组成的玻璃的热膨胀系数。研究结果表明,所建立的神经网络模型... 应用人工神经网络技术,采用 Neuralworks Predict 软件建立 BP 网络模型,通过对 R_2O-MO-Al_2O_3-SiO_2系统玻璃组成与热膨胀系数关系实验数据的训练,以期能预测该系统指定组成的玻璃的热膨胀系数。研究结果表明,所建立的神经网络模型能较正确地反映玻璃氧化物组成与其热膨胀系数之间的规律性。模型对给定组成玻璃热膨胀系数的预测值与实际测试值的相对误差在6.4%以内,表明由神经网络技术建立的这一模型能正确反映 R_2O-MO-Al_2O_3-SiO_2系统玻璃组成与热膨胀系数间的内在规律性。 展开更多
关键词 配方设计 应用 热膨胀系数 人工神经网络技术 BP网络模型 神经网络模型 玻璃组成 实验数据 研究结果 相对误差 规律性 系统 氧化物 测试值 预测值
下载PDF
人工神经网络在钢铁材料力学性能预测方面的应用 被引量:9
17
作者 左秀荣 姜茂发 薛向欣 《特殊钢》 北大核心 2004年第5期26-29,共4页
人工神经网络模型特别适用于非线性系统 ,具有较好的学习精度和概括能力 ,已成功应用于钢铁材料力学性能的预测。使用人工神经网络模型 ,通过输入合金元素、组织、生产工艺参数可预测钢铁材料的抗拉强度、延伸率、韧性、疲劳和蠕变性能... 人工神经网络模型特别适用于非线性系统 ,具有较好的学习精度和概括能力 ,已成功应用于钢铁材料力学性能的预测。使用人工神经网络模型 ,通过输入合金元素、组织、生产工艺参数可预测钢铁材料的抗拉强度、延伸率、韧性、疲劳和蠕变性能。概要叙述了人工神经网络在预测板材、球墨铸铁的常温力学性能 ,合金结构钢的淬透性 ,高速钢。 展开更多
关键词 钢铁材料 淬透性 微合金钢 球墨铸铁 合金结构钢 高速钢 力学性能 预测 板材 成功
下载PDF
基于人工神经网络的Nd-Fe-Co-Zr-B系永磁合金磁性的预测模型 被引量:5
18
作者 连利仙 刘颖 +2 位作者 叶金文 高升吉 涂铭旌 《金属学报》 SCIE EI CAS CSCD 北大核心 2005年第5期529-533,共5页
为了优化合金成分以提高纳米复相Nd-Fe-Co-Zr-B系永磁合金磁性,采用均匀设计方法设计了Nd,Co,Zr和B的4因素6水平U18(64)实验方案,建立了合金成分与磁性之间的人工神经网络(ANN)预测模型.利用该预测模型对Nd-Fe-B 合金的成分进行了优化.... 为了优化合金成分以提高纳米复相Nd-Fe-Co-Zr-B系永磁合金磁性,采用均匀设计方法设计了Nd,Co,Zr和B的4因素6水平U18(64)实验方案,建立了合金成分与磁性之间的人工神经网络(ANN)预测模型.利用该预测模型对Nd-Fe-B 合金的成分进行了优化.同时,利用所建立的人工神经网络预测模型研究了单个元素对Nd-Fe-B合金磁性的影响规律,以及多元素间的交互作用与合金磁性间的关系.结果表明:预测结果与实测结果吻合良好,预测结果的相对误差很小, Br的相对误差在1.66%以内, (BH)m的相对误差在1.94%以内,Hcj的相对误差在7.7%以内. 展开更多
关键词 Nd-Re-B 神经网络 均匀设计 磁性
下载PDF
人工神经网络设计及其在非调质钢力学性能预测中的应用 被引量:12
19
作者 梅燕娜 武建军 冯慧娟 《热加工工艺》 CSCD 北大核心 2009年第4期108-110,115,共4页
在实验数据的基础上,利用人工神经网络建立了非调质钢的抗拉强度、屈服强度、断面收缩率和断后伸长率等力学性能与合金成分对应关系的模型。将合金成分作为网络的输入,非调质钢的力学性能作为网络的输出,来训练网络预测非调质钢的力学性... 在实验数据的基础上,利用人工神经网络建立了非调质钢的抗拉强度、屈服强度、断面收缩率和断后伸长率等力学性能与合金成分对应关系的模型。将合金成分作为网络的输入,非调质钢的力学性能作为网络的输出,来训练网络预测非调质钢的力学性能,与实测值比较获得了满意的结果,为高性能材料设计提供了一个辅助手段。 展开更多
关键词 材料设计 人工神经网络 非调质钢 力学性能
下载PDF
人工神经网络技术及其在陶瓷工业中的应用 被引量:9
20
作者 曾令可 孙宇彤 +1 位作者 贺海洋 童晓濂 《陶瓷学报》 CAS 1998年第4期225-229,共5页
本文分析了人工神经网络技术的发展及特点,结合其在陶瓷工业中的应用情况,包括窑炉温度场分布的预测、窑炉烧成中的工况辨识、PTC材料性能识别、陶瓷缺陷的分析及耐火材料SiC生产量的拟合预报等,阐述了人工神经网络技术在陶瓷... 本文分析了人工神经网络技术的发展及特点,结合其在陶瓷工业中的应用情况,包括窑炉温度场分布的预测、窑炉烧成中的工况辨识、PTC材料性能识别、陶瓷缺陷的分析及耐火材料SiC生产量的拟合预报等,阐述了人工神经网络技术在陶瓷工业有广阔的应用前景。 展开更多
关键词 陶瓷工业 神经网络 温度场预测 材料性能 缺陷
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部