Zeroing neurodynamics methodology,which dedicates to finding equilibrium points of equations,has been proven to be a powerful tool in the online solving of problems with considerable complexity.In this paper,a method ...Zeroing neurodynamics methodology,which dedicates to finding equilibrium points of equations,has been proven to be a powerful tool in the online solving of problems with considerable complexity.In this paper,a method for underwater acoustic sensor network(UASN)localisation is proposed based on zeroing neurodynamics methodology to preferably locate moving underwater nodes.A zeroing neurodynamics model specifically designed for UASN localisation is constructed with rigorous theoretical analyses of its effectiveness.The proposed zeroing neurodynamics model is compatible with some localisation algorithms,which can be utilised to eliminate error in non‐ideal situations,thus further improving its effectiveness.Finally,the effectiveness and compatibility of the proposed zeroing neurodynamics model are substantiated by examples and computer simulations.展开更多
A cavity viscoelastic structure has a good sound absorption performance and is often used as a reflective baffle or sound absorption cover in underwater acoustic structures.The acoustic performance field has become a ...A cavity viscoelastic structure has a good sound absorption performance and is often used as a reflective baffle or sound absorption cover in underwater acoustic structures.The acoustic performance field has become a key research direction worldwide.Because of the time-consuming shortcomings of the traditional numerical analysis method and the high cost of the experimental method for measuring the reflection coefficient to evaluate the acoustic performance of coatings,this innovative study predicted the reflection coefficient of a viscoelastic coating containing a cylindrical cavity based on an artificial neural network(ANN).First,themapping relationship between the input characteristics and reflection coefficient was analysed.When the elastic modulus and loss factor value were smaller,the characteristics of the reflection coefficient curve were more complicated.These key parameters affected the acoustic performance of the viscoelastic coating.Second,a dataset of the acoustic performance of the viscoelastic coating containing a cylindrical cavity was generated based on the finite elementmethod(FEM),which avoided a large number of repeated experiments.The minmax normalization method was used to preprocess the input characteristics of the viscoelastic coating,and the reflection coefficient was used as the dataset label.The grid search method was used to fine-tune the ANNparameters,and the prediction error was studied based on a 10-fold cross-validation.Finally,the error distributions were analysed.The average root means square error(RMSE)and the mean absolute percentage error(MAPE)predicted by the improved ANN model were 0.298%and 1.711%,respectively,and the Pearson correlation coefficient(PCC)was 0.995,indicating that the improved ANN model accurately predicted the acoustic performance of the viscoelastic coating containing a cylindrical cavity.In practical engineering applications,by expanding the database of the material range,cavity size and backing of the coating,the reflection coefficient of more sound-absorbing layers was evaluated,which is useful for efficiently predicting the acoustic performance of coatings in a specific frequency range and has great application value.展开更多
The increasing scale and complexity of power systems require high performance and high reliability of power system protection.Protective relaying based on directional comparison with power line carrier or microwave ch...The increasing scale and complexity of power systems require high performance and high reliability of power system protection.Protective relaying based on directional comparison with power line carrier or microwave channels is the most suitable protection scheme for long distance EHV transmission lines and is widely used in power systems.The key element of such protection is a directional relay used to discriminate the fault direction.In order to overcome the disadvantages of conventional directional relays,the authors of this paper put forward the directional comparison carrier protection based on the artificial neural network(ANN).The protection is extensively tested using electromagnetic transient program (EMTP) under various electric power system operating and fault conditions.It is proved that the directional comparison carrier protection based on ANN,which can recognize various fault patterns of the protected transmission line(such as fault direction,fault phases etc.)correctly in any kind of operating and fault conditions and the whole process,is satisfactory for EHV transmission line protection.展开更多
针对现有测向系统多信号适应能力弱、测向精度低的问题,提出一种基于数据驱动的高精度阵列测向新方法。该方法提取单信号入射时的输入特征向量,基于卷积神经网络构建单信号测向网络框架。利用信号的独立性,将多信号测向问题转化为单信...针对现有测向系统多信号适应能力弱、测向精度低的问题,提出一种基于数据驱动的高精度阵列测向新方法。该方法提取单信号入射时的输入特征向量,基于卷积神经网络构建单信号测向网络框架。利用信号的独立性,将多信号测向问题转化为单信号测向问题,在单信号训练网络的基础上实现多信号来波方向估计。仿真实验与理论分析结果表明,该方法有效减少了输入特征维数和网络训练样本数目,在多信号同时入射及阵列互耦效应条件下均获得了高精度的到达方向(Direction of Arrival,DOA)估计的测向结果。展开更多
With the development of industrial production modernization, FMS and CIMS will become more and more popularized. For its control system is increasingly modeled, intellectualized and automatized, in order to raise the ...With the development of industrial production modernization, FMS and CIMS will become more and more popularized. For its control system is increasingly modeled, intellectualized and automatized, in order to raise the reliability and stability in the manufacturing process, the comprehensive monitoring and diagnosis aimed at cutting tool wear and chatter become more and more important and get rapid development. The paper tried to discuss of the intellectual status identification method based on acoustics-vibra characteristics of machining process, and propose that the working conditions may be taken as a core, complex fuzzy inference neural network model based on artificial neural network theory, and by using various kinds of modernized signal processing method to abstract enough characteristics parameters which will reflect overall processing status from machining acoustics-vibra signal as information source, to identify different working condition, and provide guarantee for automation and intelligence in machining process. The complex network is composed of NNw and NNs, Each of them is composed of BP model network, NNw is weight network at rule condition, NNs is decision-making network of each status. Y out is final inference result which is to take subordinate degree as weight from NNw, to weight reflecting result from NNs and obtain status inference of monitoring system. In the process of machining, the acoustics-vibor signal were gotten by the acoustimeter and the acceleration piezoelectricity detector, the date is analysed by the signal processing software in time and frequency domain, then form multi feature parameter vector of criterion pattern samples for the different stage of cutting chatter and acoustics-vibra multi feature parameter vector. The vector can give a accurate and comprehensive description for the cutting process, and have the characteristic which are speediness of time domain and veracity of frequency domain. The research works have been practically applied in identification of tool wear, cutting chatter, experiment results showed that it is practicable to identify the cutting chatter based on fuzzy neural network, and the new method based on fuzzy neural network can be applied to other state identification in machining process.展开更多
基金supported in part by the Key Laboratory of IoT of Qinghai under Grant 2022‐ZJ‐Y21in part by the National Natural Science Foundation of China under Grant No.61962052.
文摘Zeroing neurodynamics methodology,which dedicates to finding equilibrium points of equations,has been proven to be a powerful tool in the online solving of problems with considerable complexity.In this paper,a method for underwater acoustic sensor network(UASN)localisation is proposed based on zeroing neurodynamics methodology to preferably locate moving underwater nodes.A zeroing neurodynamics model specifically designed for UASN localisation is constructed with rigorous theoretical analyses of its effectiveness.The proposed zeroing neurodynamics model is compatible with some localisation algorithms,which can be utilised to eliminate error in non‐ideal situations,thus further improving its effectiveness.Finally,the effectiveness and compatibility of the proposed zeroing neurodynamics model are substantiated by examples and computer simulations.
基金the National Natural Science Foundation of China(Nos.51765008 and 11304050)the High-Level Innovative Talents Project of Guizhou Province(No.20164033)+1 种基金the Science and Technology Project of Guizhou Province(No.2020-1Z048)the Open Project of the Key Laboratory of Modern Manufacturing Technology of the Ministry of Education(No.XDKFJJ[2016]10).
文摘A cavity viscoelastic structure has a good sound absorption performance and is often used as a reflective baffle or sound absorption cover in underwater acoustic structures.The acoustic performance field has become a key research direction worldwide.Because of the time-consuming shortcomings of the traditional numerical analysis method and the high cost of the experimental method for measuring the reflection coefficient to evaluate the acoustic performance of coatings,this innovative study predicted the reflection coefficient of a viscoelastic coating containing a cylindrical cavity based on an artificial neural network(ANN).First,themapping relationship between the input characteristics and reflection coefficient was analysed.When the elastic modulus and loss factor value were smaller,the characteristics of the reflection coefficient curve were more complicated.These key parameters affected the acoustic performance of the viscoelastic coating.Second,a dataset of the acoustic performance of the viscoelastic coating containing a cylindrical cavity was generated based on the finite elementmethod(FEM),which avoided a large number of repeated experiments.The minmax normalization method was used to preprocess the input characteristics of the viscoelastic coating,and the reflection coefficient was used as the dataset label.The grid search method was used to fine-tune the ANNparameters,and the prediction error was studied based on a 10-fold cross-validation.Finally,the error distributions were analysed.The average root means square error(RMSE)and the mean absolute percentage error(MAPE)predicted by the improved ANN model were 0.298%and 1.711%,respectively,and the Pearson correlation coefficient(PCC)was 0.995,indicating that the improved ANN model accurately predicted the acoustic performance of the viscoelastic coating containing a cylindrical cavity.In practical engineering applications,by expanding the database of the material range,cavity size and backing of the coating,the reflection coefficient of more sound-absorbing layers was evaluated,which is useful for efficiently predicting the acoustic performance of coatings in a specific frequency range and has great application value.
文摘The increasing scale and complexity of power systems require high performance and high reliability of power system protection.Protective relaying based on directional comparison with power line carrier or microwave channels is the most suitable protection scheme for long distance EHV transmission lines and is widely used in power systems.The key element of such protection is a directional relay used to discriminate the fault direction.In order to overcome the disadvantages of conventional directional relays,the authors of this paper put forward the directional comparison carrier protection based on the artificial neural network(ANN).The protection is extensively tested using electromagnetic transient program (EMTP) under various electric power system operating and fault conditions.It is proved that the directional comparison carrier protection based on ANN,which can recognize various fault patterns of the protected transmission line(such as fault direction,fault phases etc.)correctly in any kind of operating and fault conditions and the whole process,is satisfactory for EHV transmission line protection.
文摘针对现有测向系统多信号适应能力弱、测向精度低的问题,提出一种基于数据驱动的高精度阵列测向新方法。该方法提取单信号入射时的输入特征向量,基于卷积神经网络构建单信号测向网络框架。利用信号的独立性,将多信号测向问题转化为单信号测向问题,在单信号训练网络的基础上实现多信号来波方向估计。仿真实验与理论分析结果表明,该方法有效减少了输入特征维数和网络训练样本数目,在多信号同时入射及阵列互耦效应条件下均获得了高精度的到达方向(Direction of Arrival,DOA)估计的测向结果。
文摘With the development of industrial production modernization, FMS and CIMS will become more and more popularized. For its control system is increasingly modeled, intellectualized and automatized, in order to raise the reliability and stability in the manufacturing process, the comprehensive monitoring and diagnosis aimed at cutting tool wear and chatter become more and more important and get rapid development. The paper tried to discuss of the intellectual status identification method based on acoustics-vibra characteristics of machining process, and propose that the working conditions may be taken as a core, complex fuzzy inference neural network model based on artificial neural network theory, and by using various kinds of modernized signal processing method to abstract enough characteristics parameters which will reflect overall processing status from machining acoustics-vibra signal as information source, to identify different working condition, and provide guarantee for automation and intelligence in machining process. The complex network is composed of NNw and NNs, Each of them is composed of BP model network, NNw is weight network at rule condition, NNs is decision-making network of each status. Y out is final inference result which is to take subordinate degree as weight from NNw, to weight reflecting result from NNs and obtain status inference of monitoring system. In the process of machining, the acoustics-vibor signal were gotten by the acoustimeter and the acceleration piezoelectricity detector, the date is analysed by the signal processing software in time and frequency domain, then form multi feature parameter vector of criterion pattern samples for the different stage of cutting chatter and acoustics-vibra multi feature parameter vector. The vector can give a accurate and comprehensive description for the cutting process, and have the characteristic which are speediness of time domain and veracity of frequency domain. The research works have been practically applied in identification of tool wear, cutting chatter, experiment results showed that it is practicable to identify the cutting chatter based on fuzzy neural network, and the new method based on fuzzy neural network can be applied to other state identification in machining process.