The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein...The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.展开更多
The development of promising zinc anodes mainly suffers from their low plating/stripping coulombic efficiencies when using aqueous electrolyte,which are mainly associated with the interfacial formation of irreversible...The development of promising zinc anodes mainly suffers from their low plating/stripping coulombic efficiencies when using aqueous electrolyte,which are mainly associated with the interfacial formation of irreversible by-products.It is urgent to develop technologies that can solve this issue fundamentally.Herein,we report an artificial Sc_(2)O_(3) protective film to construct a new class of interface for Zn anode.The density functional theory simulation and experimental results have proven that the interfacial side reaction was inhibited via a stratified adsorption effect between this artificial layer and Zn anode.Benefiting from this novel structure,the Sc_(2)O_(3)-coated Zn anode can run for more than 100 cycles without short circuit and exhibit low voltage hysteresis,and the coulombic efficiency increases by 1.2%.Importantly,it shows a good application prospect when matched with two of popular manganese-based and vanadium-based cathodes.The excellent electrochemical performance of the Sc_(2)O_(3)-coated Zn anode highlights the importance of rational design of anode materials and demonstrates a good way for developing high-performance Zn anodes with long lifespan and high efficiency.展开更多
Lithium(Li)metal anodes with the high theoretical specific capacity(3860 mAh g^(-1))and most negative reduction potential(-3.04 V vs.standard hydrogen electrode)have been considered as an ultimate choice for energy st...Lithium(Li)metal anodes with the high theoretical specific capacity(3860 mAh g^(-1))and most negative reduction potential(-3.04 V vs.standard hydrogen electrode)have been considered as an ultimate choice for energy storage devices with high energy density[1-4].However,the practical applications of Li metalbased batteries(LMBs)are confronted with two tough issues:Li dendrite growth induced by uneven Li depositions and unstable solid electrolyte interphase(SEI)(Fig.1a)[5,6].展开更多
Li-S batteries have shown great potential as secondary energy batteries.However,the side reaction between Li anodes and polysulfides seriously limited their practical application.Herein,the artificial protective film,...Li-S batteries have shown great potential as secondary energy batteries.However,the side reaction between Li anodes and polysulfides seriously limited their practical application.Herein,the artificial protective film,which is consisted of Li-Nafion and TiO_(2),was designed and successfully prepared to achieve a corrosion-resistant Li anode in Li-S battery.In the composite protective film,the Li-Nafion could efficiently prevent the contact between Li anodes and polysulfides,and the incorporation of TiO_(2)nanoparticles into the Nafion could significantly increase the ionic conductivity and mechanical strength of the protective film.Li-Li symmetric cells with an optimal artificial protective film exhibited an extended cycle-life of 750 h at a current density of 1 mA/cm^(2)in Li_(2)S_(8)electrolyte.Moreover,the Li-S full battery with an optimal protective Li anode exhibited higher capacity retention of 777.4 mAh/g after 100 cycles at 0.1 C as well as better rate performance than the cell with a pure Li anode.This work provides alternative insights to suppress the side reaction for Li-S batteries with high capacity retention.展开更多
基金the financial support from the National Natural Science Foundation of China(Nos.22205191 and 52002346)the Science and Technology Innovation Program of Hunan Province(No.2021RC3109)+1 种基金the Natural Science Foundation of Hunan Province,China(No.2022JJ40446)Guangxi Key Laboratory of Low Carbon Energy Material(No.2020GXKLLCEM01)。
文摘The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.
基金supported by the National Natural Science Foundation of China(Grant no.51932011)。
文摘The development of promising zinc anodes mainly suffers from their low plating/stripping coulombic efficiencies when using aqueous electrolyte,which are mainly associated with the interfacial formation of irreversible by-products.It is urgent to develop technologies that can solve this issue fundamentally.Herein,we report an artificial Sc_(2)O_(3) protective film to construct a new class of interface for Zn anode.The density functional theory simulation and experimental results have proven that the interfacial side reaction was inhibited via a stratified adsorption effect between this artificial layer and Zn anode.Benefiting from this novel structure,the Sc_(2)O_(3)-coated Zn anode can run for more than 100 cycles without short circuit and exhibit low voltage hysteresis,and the coulombic efficiency increases by 1.2%.Importantly,it shows a good application prospect when matched with two of popular manganese-based and vanadium-based cathodes.The excellent electrochemical performance of the Sc_(2)O_(3)-coated Zn anode highlights the importance of rational design of anode materials and demonstrates a good way for developing high-performance Zn anodes with long lifespan and high efficiency.
基金supported by National Key Research and Development Program,China(2016YFA0202500 and 2016YFA0200102)National Natural Science Foundation of China,China(21805161,21808124,U1932220)Fundamental Research Funds for the Central Universites of Central South University,China(2020zzts471)。
文摘Lithium(Li)metal anodes with the high theoretical specific capacity(3860 mAh g^(-1))and most negative reduction potential(-3.04 V vs.standard hydrogen electrode)have been considered as an ultimate choice for energy storage devices with high energy density[1-4].However,the practical applications of Li metalbased batteries(LMBs)are confronted with two tough issues:Li dendrite growth induced by uneven Li depositions and unstable solid electrolyte interphase(SEI)(Fig.1a)[5,6].
基金partially supported by grants from the National Natural Science Foundation of China(Nos.51772069 and 52072099)。
文摘Li-S batteries have shown great potential as secondary energy batteries.However,the side reaction between Li anodes and polysulfides seriously limited their practical application.Herein,the artificial protective film,which is consisted of Li-Nafion and TiO_(2),was designed and successfully prepared to achieve a corrosion-resistant Li anode in Li-S battery.In the composite protective film,the Li-Nafion could efficiently prevent the contact between Li anodes and polysulfides,and the incorporation of TiO_(2)nanoparticles into the Nafion could significantly increase the ionic conductivity and mechanical strength of the protective film.Li-Li symmetric cells with an optimal artificial protective film exhibited an extended cycle-life of 750 h at a current density of 1 mA/cm^(2)in Li_(2)S_(8)electrolyte.Moreover,the Li-S full battery with an optimal protective Li anode exhibited higher capacity retention of 777.4 mAh/g after 100 cycles at 0.1 C as well as better rate performance than the cell with a pure Li anode.This work provides alternative insights to suppress the side reaction for Li-S batteries with high capacity retention.