Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing ca...Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing capital from the investors to the business houses, which consequently leads to the availability of funds for business expansion. In this paper, we investigate to predict the daily excess returns of Bombay Stock Exchange (BSE) indices over the respective Treasury bill rate returns. Initially, we prove that the excess return time series do not fluctuate randomly. We are applying the prediction models of Autoregressive feed forward Artificial Neural Networks (ANN) to predict the excess return time series using lagged value. For the Artificial Neural Networks model using a Genetic Algorithm is constructed to choose the optimal topology. This paper examines the feasibility of the prediction task and provides evidence that the markets are not fluctuating randomly and finally, to apply the most suitable prediction model and measure their efficiency.展开更多
In this study, a controlled experiment of winter wheat under water stress at the seedling stage was conducted in soil columns in greenhouse. Based on the data gotten from the experiment, a model to estimate root lengt...In this study, a controlled experiment of winter wheat under water stress at the seedling stage was conducted in soil columns in greenhouse. Based on the data gotten from the experiment, a model to estimate root length density distribution was developed through optimizing the weights of neural network by genetic algorithm. The neural network model was constructed by using forward neural network framework, by applying the strategy of the roulette wheel selection and reserving the most optimizing series of weights, which were composed by real codes. This model was applied to predict the root length density distribution of winter wheat, and the predicted root length density had good agreement with experiment data. The way could save a lot of manpower and material resources for determining the root length density distribution of winter wheat.展开更多
文摘Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing capital from the investors to the business houses, which consequently leads to the availability of funds for business expansion. In this paper, we investigate to predict the daily excess returns of Bombay Stock Exchange (BSE) indices over the respective Treasury bill rate returns. Initially, we prove that the excess return time series do not fluctuate randomly. We are applying the prediction models of Autoregressive feed forward Artificial Neural Networks (ANN) to predict the excess return time series using lagged value. For the Artificial Neural Networks model using a Genetic Algorithm is constructed to choose the optimal topology. This paper examines the feasibility of the prediction task and provides evidence that the markets are not fluctuating randomly and finally, to apply the most suitable prediction model and measure their efficiency.
文摘In this study, a controlled experiment of winter wheat under water stress at the seedling stage was conducted in soil columns in greenhouse. Based on the data gotten from the experiment, a model to estimate root length density distribution was developed through optimizing the weights of neural network by genetic algorithm. The neural network model was constructed by using forward neural network framework, by applying the strategy of the roulette wheel selection and reserving the most optimizing series of weights, which were composed by real codes. This model was applied to predict the root length density distribution of winter wheat, and the predicted root length density had good agreement with experiment data. The way could save a lot of manpower and material resources for determining the root length density distribution of winter wheat.