The Koyna region of Maharashtra located in the western part of the~65 Myr old Deccan traps province,overlying the Neoarchean cratonic granitoid basement of peninsular India,has been experiencing recurring seismicity s...The Koyna region of Maharashtra located in the western part of the~65 Myr old Deccan traps province,overlying the Neoarchean cratonic granitoid basement of peninsular India,has been experiencing recurring seismicity since 1962 after the impoundment of the Shivajisagar Reservoir behind the Koyna Dam.展开更多
In recent years, locating total lightning at the VLF/LF band has become one of the most important directions in lightning detection. The Low-frequency E-field Detection Array(LFEDA) consisting of nine fast antennas wa...In recent years, locating total lightning at the VLF/LF band has become one of the most important directions in lightning detection. The Low-frequency E-field Detection Array(LFEDA) consisting of nine fast antennas was developed by the Chinese Academy of Meteorological Sciences in Guangzhou between 2014 and 2015. This paper documents the composition of the LFEDA and a lightning-locating algorithm that applies to the low-frequency electric field radiated by lightning pulse discharge events(LPDEs). Theoretical simulation and objective assessment of the accuracy and detection efficiency of LFEDA have been done using Monte Carlo simulation and artificial triggered lightning experiment, respectively. The former results show that having a station in the network with a comparatively long baseline improves both the horizontal location accuracy in the direction perpendicular to the baseline and the vertical location accuracy along the baseline. The latter results show that detection efficiencies for triggered lightning flashes and return strokes are 100% and 95%, respectively. The average planar location error for return strokes of triggered lightning flashes is 102 m. By locating LPDEs in thunderstorms, we find that LPDEs are consistent with convective regions as indicated by strong reflectivity columns, and present a reasonable distribution in the vertical direction.In addition, the LFEDA can reveal an image of lightning development through mapping the channels of lightning. Based on three-dimensional locations, the vertical propagation speed of the preliminary breakdown and the changing trend of the leader's speed in an intra-cloud and a cloud-to-ground flash are investigated. The research results show that the LFEDA has the capability for three-dimensional location of lightning, which provides a new technique for researching lightning development characteristics and thunderstorm electricity.展开更多
This paper reviews recent advances in understanding the physical processes of artificially triggered light- ning and natural lightning as well as the progress in testing lightning protection technologies, based on a s...This paper reviews recent advances in understanding the physical processes of artificially triggered light- ning and natural lightning as well as the progress in testing lightning protection technologies, based on a series of lightning field campaigns jointly conducted by the Chinese Academy of Meteorological Sciences and Guangdong Meteorological Bureau since 2006. During the decade-long series of lightning field experi- ments, the technology of rocket-wire artificially triggered lightning has been improved, and has successfully triggered 94 lightning flashes. Through direct lightning current waveform measurements, an average return stroke peak current of 16 kA was obtained. The phenomenon that the downward leader connects to the lateral surface of the upward leader in the attachment process was discovered, and the speed of the upward leader during the connection process being significantly greater than that of the downward leader was re- vealed. The characteristics of several return strokes in cloud-to-ground lighting have also been unveiled, and the mechanism causing damage to lightning protection devices (i.e., ground potential rise within the rated current) was established. The performance of three lightning monitoring systems in Guangdong Province has also been quantitatively assessed.展开更多
基金conducted under the project sponsored by the Ministry of Earth Sciences,Govt.of India[Project Code-Mo ES/P.O.(Seismo)/1(374)/2019]
文摘The Koyna region of Maharashtra located in the western part of the~65 Myr old Deccan traps province,overlying the Neoarchean cratonic granitoid basement of peninsular India,has been experiencing recurring seismicity since 1962 after the impoundment of the Shivajisagar Reservoir behind the Koyna Dam.
基金supported by the National Natural Science Foundation of China(Grant Nos.41675005,91537290&41275008)the Basic Research Fund of Chinese Academy of Meteorological Sciences(Grant Nos.2016Z002&2015Z006)
文摘In recent years, locating total lightning at the VLF/LF band has become one of the most important directions in lightning detection. The Low-frequency E-field Detection Array(LFEDA) consisting of nine fast antennas was developed by the Chinese Academy of Meteorological Sciences in Guangzhou between 2014 and 2015. This paper documents the composition of the LFEDA and a lightning-locating algorithm that applies to the low-frequency electric field radiated by lightning pulse discharge events(LPDEs). Theoretical simulation and objective assessment of the accuracy and detection efficiency of LFEDA have been done using Monte Carlo simulation and artificial triggered lightning experiment, respectively. The former results show that having a station in the network with a comparatively long baseline improves both the horizontal location accuracy in the direction perpendicular to the baseline and the vertical location accuracy along the baseline. The latter results show that detection efficiencies for triggered lightning flashes and return strokes are 100% and 95%, respectively. The average planar location error for return strokes of triggered lightning flashes is 102 m. By locating LPDEs in thunderstorms, we find that LPDEs are consistent with convective regions as indicated by strong reflectivity columns, and present a reasonable distribution in the vertical direction.In addition, the LFEDA can reveal an image of lightning development through mapping the channels of lightning. Based on three-dimensional locations, the vertical propagation speed of the preliminary breakdown and the changing trend of the leader's speed in an intra-cloud and a cloud-to-ground flash are investigated. The research results show that the LFEDA has the capability for three-dimensional location of lightning, which provides a new technique for researching lightning development characteristics and thunderstorm electricity.
基金Supported by the National Key Basic Research Program of China(2014CB441406 and 2014CB441405)in part by the National Natural Science Foundation of China(41475003 and 51420105011)Basic Research Fund of the Chinese Academy of Meteorological Sciences(2015Z006 and 2014R015)
文摘This paper reviews recent advances in understanding the physical processes of artificially triggered light- ning and natural lightning as well as the progress in testing lightning protection technologies, based on a series of lightning field campaigns jointly conducted by the Chinese Academy of Meteorological Sciences and Guangdong Meteorological Bureau since 2006. During the decade-long series of lightning field experi- ments, the technology of rocket-wire artificially triggered lightning has been improved, and has successfully triggered 94 lightning flashes. Through direct lightning current waveform measurements, an average return stroke peak current of 16 kA was obtained. The phenomenon that the downward leader connects to the lateral surface of the upward leader in the attachment process was discovered, and the speed of the upward leader during the connection process being significantly greater than that of the downward leader was re- vealed. The characteristics of several return strokes in cloud-to-ground lighting have also been unveiled, and the mechanism causing damage to lightning protection devices (i.e., ground potential rise within the rated current) was established. The performance of three lightning monitoring systems in Guangdong Province has also been quantitatively assessed.