期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
An experimental study on the relationship between acoustic parameters and mechanical properties of frozen silty clay 被引量:5
1
作者 Xing Huang DongQing Li +1 位作者 Feng Ming JianHong Fang 《Research in Cold and Arid Regions》 CSCD 2013年第5期596-602,共7页
To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to... To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to frozen silty clay by using RSM-SY5(T) nonmetal supersonic test meter, and the tensile strength and compressive strength of silty clay were measured under various negative temperatures. Test and analysis results indicate that, ultrasonic wave velocity rapidly changes in the temperature range of-1 ℃ to -5 ℃. Ultrasonic wave velocity increased with an increase of water content until the water content reached the critical water content, while decreased with an increase of water content after the water content exceeded the critical water content. This study showed that there was strong positive correlation between the ul- trasonic wave velocity and the frozen soil strength. As ultrasonic wave velocity increased, either tensile strength or com- pressive strength increased. Based on the experimental data, the relationship between ultrasonic wave velocity and frozen silty clay strength was obtained through regression analysis. It was found that the ultrasonic test technique can be used to test frozen soils and lay the foundation for the determination of frozen soil strength. 展开更多
关键词 artificially frozen soil frozen soil strength ultrasonic wave velocity critical water content dynamic elastic mechanical parameters
下载PDF
Artificial Sun synchronous frozen orbit control scheme design based on J_2 perturbation 被引量:2
2
作者 Gong-Bo Wang Yun-He Meng Wei Zheng Guo-Jian Tang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第5期809-816,共8页
Sun synchronous orbit and frozen orbit formed due to J 2 perturbation have very strict constraints on orbital parameters,which have restricted the application a lot.In this paper,several control strategies were illust... Sun synchronous orbit and frozen orbit formed due to J 2 perturbation have very strict constraints on orbital parameters,which have restricted the application a lot.In this paper,several control strategies were illustrated to realize Sun synchronous frozen orbit with arbitrary orbital elements using continuous low-thrust.Firstly,according to mean element method,the averaged rate of change of the orbital elements,originating from disturbing constant accelerations over one orbital period,was derived from Gauss' variation of parameters equations.Then,we proposed that binormal acceleration could be used to realize Sun synchronous orbit,and radial or transverse acceleration could be adopted to eliminate the rotation of the argument of the perigee.Finally,amending methods on the control strategies mentioned above were presented to eliminate the residual secular growth.Simulation results showed that the control strategies illustrated in this paper could realize Sun synchronous frozen orbit with arbitrary orbital elements,and can save much more energy than the schemes presented in previous studies,and have no side effect on other orbital parameters' secular motion. 展开更多
关键词 Continuous low-thrust Artificial Sun synchronous orbit Artificial frozen orbit Gauss' variation of parameters equations Mean element method
下载PDF
Triaxial compression strength for artificial frozen clay with thermal gradient 被引量:2
3
作者 赵晓东 周国庆 陈国舟 《Journal of Central South University》 SCIE EI CAS 2013年第1期218-225,共8页
A series of triaxial compression tests for frozen clay were performed by KoDCGF (freezing with non-uniform temperature under loading after K0 consolidation) method and GFC (freezing with non-uniform temperature wit... A series of triaxial compression tests for frozen clay were performed by KoDCGF (freezing with non-uniform temperature under loading after K0 consolidation) method and GFC (freezing with non-uniform temperature without experiencing Ko consolidation) method at various confining pressures and thermal gradients. The experimental results indicate that the triaxial compression strength for frozen clay in KoDCGF test increases with the increase of confining pressure, but it decreases as the confining pressure increases further in GFC test. In other words, the compression strength for frozen clay with identical confining pressure decreases with the increase in thermal gradient both in KoDCGF test and GFC test. The strength of frozen clay in KoDCGF test is dependent of pore ice strength, soil particle strength and interaction between soil skeleton and pore ice. The decrease of water content and distance between soil particles leads to the decrease of pore size and the increase of contact area between particles in KoDCGF test, which further results in a higher compression strength than that in GFC test. The compression strength for frozen clay with thermal gradient can be descried by strength for frozen clay with a uniform temperature identical to the temperature at the height of specimen where the maximum tensile stress appears. 展开更多
关键词 artificial frozen clay triaxial compression test thermal gradient STRENGTH
下载PDF
Artificial frozen orbit control scheme based on J_2 perturbation 被引量:4
4
作者 WANG GongBo MENG YunHe +1 位作者 ZHENG Wei TANG GuoJian 《Science China(Technological Sciences)》 SCIE EI CAS 2010年第11期3138-3144,共7页
Since the inclination of frozen orbit with non-rotation of the perigee that occurs due to J2 perturbation must be equal to the critical inclination, this regulation has restricted the application of frozen orbit a lot... Since the inclination of frozen orbit with non-rotation of the perigee that occurs due to J2 perturbation must be equal to the critical inclination, this regulation has restricted the application of frozen orbit a lot. In this paper, we propose two control strategies to eliminate the secular growth of the argument of the perigee for orbits that are not at the critical inclination. One control strategy is using transverse continuous low-thrust, and the other is using both the transverse and the radial continuous low-thrusts. Fuel optimization in the second control strategy is addressed to make sure that the fuel consumption is the minimum. Both strategies have no effect on other orbital parameters’ secular motion. It is proved that the strategy with transverse control could save more energy than the one with radial control. Simulations show that the second control strategy could save 54.6% and 86% of energy, respectively, compared with the two methods presented in the references. 展开更多
关键词 continuous low-thrust artificial frozen orbit Gauss’variation of parameters equations mean element method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部