期刊文献+
共找到124,021篇文章
< 1 2 250 >
每页显示 20 50 100
Microstructures,corrosion behavior and mechanical properties of as-cast Mg-6Zn-2X(Fe/Cu/Ni)alloys for plugging tool applications 被引量:1
1
作者 Baosheng Liu Jiali Wei +4 位作者 Shaohua Zhang Yuezhong Zhang Pengpeng Wu Daqing Fang Guorui Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期697-711,共15页
Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess t... Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications. 展开更多
关键词 magnesium alloys microstructure micro-galvanic corrosion mechanical properties
下载PDF
Role of alloying and heat treatment on microstructure and mechanical properties of cast Al-Li alloys:A review
2
作者 Guo-hua Wu You-jie Guo +4 位作者 Fang-zhou Qi Shen Zhang Yi-xiao Wang Xin Tong Liang Zhang 《China Foundry》 SCIE EI CAS CSCD 2024年第5期445-460,共16页
Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and ... Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and are ideal structural materials for aerospace,defense and military industries.On the basis of the microstructural characteristics of cast Al-Li alloys,exploring the role of alloying and micro-alloying can stabilize their dominant position and further expand their application scope.In this review,the development progress of cast Al-Li alloys was summarized comprehensively.According to the latest research highlights,the influence of alloying and heat treatment on the microstructure and mechanical properties was systematically analyzed.The potential methods to improve the alloy performance were concluded.In response to the practical engineering requirements of cast Al-Li alloys,the scientific challenges and future research directions were discussed and prospected. 展开更多
关键词 cast Al-Li alloy ALLOYING microstructure mechanical properties heat treatment
下载PDF
Microstructure and Hot Tearing Sensitivity Simulation and Parameters Optimization for the Centrifugal Casting of Al-Cu Alloy
3
作者 Xueli He Shengkun Lv +4 位作者 Ruifeng Dou Yanying Zhang Junsheng Wang Xunliang Liu Zhi Wen 《Computers, Materials & Continua》 SCIE EI 2024年第8期2873-2895,共23页
Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for pr... Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for predicting the formation of thermal cracks,such as the stress-based Niyama,Clyne,and RDG(Rapaz-Dreiser-Grimaud)criteria.In this paper,a mathematical model of horizontal centrifugal casting was established,and numerical simulation analysis was conducted for the centrifugal casting process of cylindrical Al-Cu alloy castings to investigate the effect of the centrifugal casting process conditions on the microstructure and hot tearing sensitivity of alloy castings by using the modified RDG hot tearing criterion.Results show that increasing the centrifugal rotation and pouring speeds can refine the microstructure of the alloy but increasing the pouring and mold preheating temperatures can lead to an increase in grain size.The grain size gradually transitions from fine grain on the outer layer to coarse grain on the inner layer.Meanwhile,combined with the modified RDG hot tearing criterion,the overall distribution of the castings’hot tearing sensitivity was analyzed.The analysis results indicate that the porosity in the middle region of the casting was large,and hot tearing defects were prone to occur.The hot tearing tendency on the inner side of the casting was greater than that on the outer side.The effects of centrifugal rotation speed,pouring temperature,and preheating temperature on the thermal sensitivity of Al-Cu alloy castings are summarized in this paper.This study revealed that the tendency of alloy hot cracking decreases with the increase of the centrifugal speed,and the maximum porosity of castings decreases first and then increases with the pouring temperature.As the preheating temperature increases,the overall maximum porosity of castings shows a decreasing trend. 展开更多
关键词 Centrifugal casting Al-Cu alloy microstructure hot tearing SIMULATION
下载PDF
Microstructure and mechanical properties of Co-28Cr-6Mo-0.22C investment castings by current solution treatment
4
作者 Ze-yu Dan Jun Liu +4 位作者 Jian-lei Zhang Yan-hua Li Yuan-xin Deng Yun-hu Zhang Chang-jiang Song 《China Foundry》 SCIE EI CAS CSCD 2024年第4期369-378,共10页
This study examined the impact of current solution treatment on the microstructure and mechanical properties of the Co-28Cr-6Mo-0.22C alloy investment castings.The findings reveal that the current solution treatment s... This study examined the impact of current solution treatment on the microstructure and mechanical properties of the Co-28Cr-6Mo-0.22C alloy investment castings.The findings reveal that the current solution treatment significantly promotes the dissolution of carbides at a lower temperature.The optimal conditions for solution treatment are determined as a solution temperature of 1,125°C and a holding time of 5.0 min.Under these parameters,the size and volume fraction of precipitated phases in the investment castings are measured as6.2μm and 1.1vol.%.The yield strength,ultimate tensile strength,and total elongation of the Co-28Cr-6Mo-0.22C investment castings are 535 MPa,760 MPa,and 12.6%,respectively.These values exceed those obtained with the conventional solution treatment at 1,200°C for 4.0 h.The findings suggest a phase transformation of M_(23)C_(6)→σ+C following the current solution treatment at 1,125°C for 5.0 min.In comparison,the traditional solution treatment at 1,200°C for 4.0 h leads to the formation of M_(23)C_(6)and M_(6)C carbides.It is noteworthy that the non-thermal effect of the current during the solution treatment modifies the free energy of both the matrix and precipitation phase.This modification lowers the phase transition temperature of the M_(23)C_(6)→σ+C reaction,thereby facilitating the dissolution of carbides.As a result,the current solution treatment approach achieves carbide dissolution at a lower temperature and within a significantly shorter time when compared to the traditional solution treatment methods. 展开更多
关键词 CoCrMo alloy investment castings current solution treatment microstructure mechanical property CARBIDE
下载PDF
Characteristics and distribution of microstructures in high pressure die cast alloys with X-ray microtomography:A review
5
作者 Hai-dong Zhao Xue-ling Wang +2 位作者 Qian Wan Wen-hui Bai Fei Liu 《China Foundry》 SCIE EI CAS CSCD 2024年第5期427-444,共18页
Al and Mg alloy high pressure die castings(HPDC)are increasingly used in automotive industries.The microstructures in the castings have decisive effect on the casting mechanical properties,in which the microstructure ... Al and Mg alloy high pressure die castings(HPDC)are increasingly used in automotive industries.The microstructures in the castings have decisive effect on the casting mechanical properties,in which the microstructure characteristics are fundamental for the investigation of the microstructure-property relation.During the past decade,the microstructure characteristics of HPDC Al and Mg alloys,especially micro-pores andα-Fe,have been investigated from two-dimensional(2D)to threedimensional with X-ray micro-computed tomography(μ-CT).This paper provides an overview of the current understanding regarding the 3D characteristics and formation mechanisms of microstructures in HPDC alloys,their spatial distributions,and the impact on mechanical properties.Additionally,it outlines future research directions for the formation and control of heterogeneous microstructures in HPDC alloys. 展开更多
关键词 high pressure die casting microstructure three-dimensional characteristics DISTRIBUTION Al and Mg alloys
下载PDF
Microstructure and properties of 35 kg large aluminum alloy flywheel housing components formed by squeeze casting with local pressure compensation
6
作者 Ju-fu Jiang Jing Yan +4 位作者 Ying-ze Liu Ning Ge Ying Wang Chang-jie Ding De-chao Zou 《China Foundry》 SCIE EI CAS CSCD 2024年第5期563-576,共14页
The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were ... The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were performed,and the influence of local pressure compensation on feeding of thick-wall position,microstructure and mechanical properties of the formed components were discussed.Results show that the molten metal keeps a good fluidity and the filling is complete during the filling process.Although the solidification at thick-wall positions of the mounting ports is slow,the local pressure compensation effectively realizes the local forced feeding,significantly eliminating the shrinkage cavity defects.In the microstructure of AlSi9Mg alloy,α-Al primarily consists of fragmented dendrites and rosette grains,while eutectic Si predominantly comprises needles and short rods.The impact of local pressure compensation on strength is relatively minimal,yet its influence on elongation is considerable.Following local pressure compensation,the average elongation at the compensated areas is 9.18%,which represents a 44.90%higher than that before compensation.The average tensile strength is 209.1 MPa,and the average yield strength is 100.6 MPa.The local pressure compensation can significantly reduce or even eliminate the internal defects in the 35 kg large-weight components formed by squeeze casting. 展开更多
关键词 squeeze casting local pressure compensation aluminum alloy microstructure mechanical properties large flywheel housing components
下载PDF
Combined effects of ultrasonic vibration and FeCoNiCrCu coating on interfacial microstructure and mechanical properties of Al/Mg bimetal by compound casting
7
作者 Yuan-cai Xu Wen-ming Jiang +3 位作者 Qing-qing Li Ling-hui Yu Xiao-peng Yu Zi-tian Fan 《China Foundry》 SCIE EI CAS CSCD 2024年第5期588-598,共11页
In this work,a new treatment method combining ultrasonic vibration with FeCoNiCrCu high entropy alloy(HEA)coating was used to prepared Al/Mg bimetal through the lost foam compound casting.The effects of composite trea... In this work,a new treatment method combining ultrasonic vibration with FeCoNiCrCu high entropy alloy(HEA)coating was used to prepared Al/Mg bimetal through the lost foam compound casting.The effects of composite treatment involving ultrasonic vibration and HEA coating on interfacial microstructure and mechanical properties of Al/Mg bimetal were studied.Results demonstrate that the interface thickness of the Al/Mg bimetal with composite treatment significantly decreases to only 26.99%of the thickness observed in the untreated Al/Mg bimetal.The HEA coating hinders the diffusion between Al and Mg,resulting the significant reduction in Al/Mg intermetallic compounds in the interface.The Al/Mg bimetal interface with composite treatment is composed of Al_(3)Mg_(2)and Mg_(2)Si/AlxFeCoNiCrCu+FeCoNiCrCu/δ-Mg+Al_(12)Mg_(17)eutectic structures.The interface resulting from the composite treatment has a lower hardness than that without treatment.The acoustic cavitation and acoustic streaming effects generated by ultrasonic vibration promote the diffusion of Al elements within the HEA coating,resulting in a significant improvement in the metallurgical bonding quality on the Mg side.The fracture position shifts from the Mg side of the Al/Mg bimetal only with HEA coating to the Al side with composite treatment.The shear strength of the Al/Mg bimetal increases from 32.16 MPa without treatment to 63.44 MPa with ultrasonic vibration and HEA coating,increasing by 97.26%. 展开更多
关键词 ultrasonic vibration FeCoNiCrCu HEA coating Al/Mg bimetal interfacial microstructure shear strength compound casting
下载PDF
Improvement of microstructure and mechanical properties of Al−Cu−Li−Mg−Zn alloys through water-cooling centrifugal casting technique
8
作者 Qing-bo YANG Wen-jing SHI +4 位作者 Wen LIU Miao WANG Wen-bo WANG Li-na JIA Hu ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3486-3503,共18页
The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experime... The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experimental results demonstrated that compared with the gravity casting technique,the water-cooling centrifugal casting technique significantly reduces porosity,refinesα(Al)grains and secondary phases,modifies the morphology of secondary phases,and mitigates both macro-and micro-segregation.These improvements arise from the synergistic effects of the vigorous backflow,centrifugal field,vibration and rapid solidification.Porosity and coarse plate-like Al13Fe4/Al7Cu2Fe phase result in the fracture before the gravity-cast alloy reaches the yield point.The centrifugal-cast alloy,however,exhibits an ultra-high yield strength of 292.0 MPa and a moderate elongation of 6.1%.This high yield strength is attributed to solid solution strengthening(SSS)of 225.3 MPa,and grain boundary strengthening(GBS)of 35.7 MPa.Li contributes the most to SSS with a scaling factor of 7.9 MPa·wt.%^(-1).The elongation of the centrifugal-cast alloy can be effectively enhanced by reducing the porosity and segregation behavior,refining the microstructure and changing the morphology of secondary phases. 展开更多
关键词 Al−Cu−Li−Mg−Zn alloy water-cooling centrifugal casting microstructure mechanical properties segregation behavior
下载PDF
Microstructure and impact behavior of Mg-4Al-5RE-xGd cast magnesium alloys
9
作者 Jie Wei Qudong Wang +2 位作者 Huisheng Cai Mahmoud Ebrahimi Chuan Lei 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1799-1814,共16页
This work investigated the microstructure and impact behavior of Mg-4Al-5RE-xGd(RE represents La-Ce mischmetal;x=0,0.2,0.7 wt.%)alloys cast by high-pressure die casting(HPDC),permanent mold casting(PMC),and sand casti... This work investigated the microstructure and impact behavior of Mg-4Al-5RE-xGd(RE represents La-Ce mischmetal;x=0,0.2,0.7 wt.%)alloys cast by high-pressure die casting(HPDC),permanent mold casting(PMC),and sand casting(SC)techniques.The results indicated that with increasing Gd content,the grain sizes of the HPDC alloy had a slight change,but the grains of the PMC and SC alloys were significantly refined.Besides,the acicular Al_(11)RE_(3)phase was modified into the short-rod shape under the three casting conditions.The impact toughness of the studied alloy was mainly dominated by the absorbed energy during the crack initiation.With increasing Gd content,the impact toughness of the studied alloy monotonically increased due to the lower tendency of the modified second phase toward crack initiation.The impact stress was higher than the tensile stress,exhibiting a strain rate sensitivity for the mechanical response;however,the HPDC alloy had an inconsistent strain rate sensitivity during the impact event due to the transformation of the deformation mechanism from twinning to slip with increasing strain.Abundant dimples covered the fracture surface of the fine-grained HPDC alloys,indicating a typical ductile fracture.Nevertheless,due to the deficient{1012}twinning activity and the suppressed grain boundary sliding during the impact event,the HPDC alloys showed insufficient plastic deformation capacity. 展开更多
关键词 Mg-Al-RE alloy GADOLINIUM microstructure Impact behavior
下载PDF
Effects of Sinusoidal Vibration of Crystallization Roller on Composite Microstructure of Ti/Al Laminated Composites by Twin-Roll Casting
10
作者 李励 杜凤山 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期196-205,共10页
A new,innovative vibration cast-rolling technology of “electromagnetic stirring+dendrite breaking+asynchronous rolling” was proposed with the adoption of sinusoidal vibration of crystallization roller to prepare Ti/... A new,innovative vibration cast-rolling technology of “electromagnetic stirring+dendrite breaking+asynchronous rolling” was proposed with the adoption of sinusoidal vibration of crystallization roller to prepare Ti/Al laminated composites,and the effect of sinusoidal vibration of crystallization roller on composite microstructure was investigated in detail.The results show that the metallurgical bonding of titanium and aluminum is realized by mesh interweaving and mosaic meshing,instead of transition bonding by forming metal compound layer.The meshing depth between titanium and aluminum layers (6.6μm) of cast-rolling materials with strong vibration of crystallization roller (amplitude 0.87 mm,vibration frequency 25 Hz) is doubled compared with that of traditional cast-rolling materials (3.1μm),and the composite interfacial strength(27.0 N/mm) is twice as high as that of traditional cast-rolling materials (14.9 N/mm).This is because with the action of high-speed superposition of strong tension along the rolling direction,strong pressure along the width direction and rolling force,the composite linearity evolves from "straight line" with traditional casting-rolling to "curved line",and the depth and number of cracks in the interface increases greatly compared with those with traditional cast-rolling,which leads to the deep expansion of the meshing area between interfacial layers and promotes the stable enhancement of composite quality. 展开更多
关键词 laminated composites sinusoidal vibration composite microstructure
下载PDF
Microstructure and mechanical properties of new Mg-Zn-Y-Zr alloys with high castability and ignition resistance
11
作者 T.A.Koltygina V.E.Bazhenov +5 位作者 A.V.Koltygin A.S.Prosviryakov N.Y.Tabachkova I.I.Baranov A.A.Komissarov A.I.Bazlov 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2714-2726,共13页
Complex studies of new Mg-Zn-Y-Zr system alloys have been carried out.The content range for the formation of the two-phase structure MgSS(Mg solid solution)+LPSO(long-period stacking ordered)in alloys of the Mg-Zn-Y-Z... Complex studies of new Mg-Zn-Y-Zr system alloys have been carried out.The content range for the formation of the two-phase structure MgSS(Mg solid solution)+LPSO(long-period stacking ordered)in alloys of the Mg-Zn-Y-Zr system was determined by thermodynamic calculations.The effect of heat treatment regimes on microstructure,mechanical,and corrosion properties was invest-igated.The fluidity,hot tearing tendency,and ignition temperature of the alloys were determined.The best combination of castability,mechanical,and corrosion properties was found for the Mg-2.4Zn-4Y-0.8Zr alloy.The alloys studied are superior to their industrial counterparts in terms of technological properties,while maintain high corrosion and mechanical properties.The increased level of pro-perties is achieved by a suitable heat treatment regime that provides a complete transformation of the 18R to 14H modification of the LPSO phase. 展开更多
关键词 metals and alloys liquid-solid reactions microstructure FLUIDITY mechanical properties corrosion transmission electron mi-croscopy
下载PDF
Microstructure evolution,mechanical properties and fracture behavior of Al-xSi/AZ91D bimetallic composites prepared by a compound casting
12
作者 Guangyu Li Wenming Jiang +3 位作者 Feng Guan Junwen Zhu Yang Yu Zitian Fan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1944-1964,共21页
In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically... In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL. 展开更多
关键词 Al/Mg bimetallic composites Si content Mg_(2)Si reinforcement microstructure Mechanical properties Fracture behavior
下载PDF
Microstructure and mechanical properties of Mg-Gd-Y-Zr alloy cast by metal mould and lost foam casting 被引量:15
13
作者 李吉林 陈荣石 柯伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第4期761-766,共6页
The microstructure and mechanical properties of Mg-10.1Gd-3.74Y-0.25Zr (mass fraction, %) alloy (GW104 alloy) cast by metal mould casting (MMC) and lost foam casting (LFC) were evaluated, respectively. It is r... The microstructure and mechanical properties of Mg-10.1Gd-3.74Y-0.25Zr (mass fraction, %) alloy (GW104 alloy) cast by metal mould casting (MMC) and lost foam casting (LFC) were evaluated, respectively. It is revealed that different forming modes do not influence the phase composition of as-cast alloy. In the as-cast specimens, the microstructures are similar and composed of α-Mg solid solution, eutectic compound of α-Mg+Mg 24 (Gd, Y) 5 and cuboid-shaped Mg 5 (Gd, Y) phase; whereas the average grain size of the alloy produced by metal mould casting is smaller than that by lost foam casting. The eutectic compound of the alloy is completely dissolved after solution treatment at 525 ℃for 6 h, while the Mg 5 (Gd, Y) phase still exists after solution treatment. After peak-ageing, the lost foam cast alloy exhibits the maximum ultimate tensile strength of 285 MPa, and metal mould cast specimen 325 MPa at room temperature, while the tensile yield strengths of them are comparable. It can be concluded that GW104 alloy cast by lost foam casting possesses similar microstructure and evidently lower mechanical strength compared with metal mould cast alloy, due to slow solidification rate and proneness to form shrinkage porosities during lost foam casting process. 展开更多
关键词 Mg-Gd-Y-Zr alloy lost foam casting metal mould casting microstructure mechanical property
下载PDF
Effect of applied pressure on microstructure and mechanical properties of Mg-Zn-Y quasicrystal-reinforced AZ91D magnesium matrix composites prepared by squeeze casting 被引量:6
14
作者 杨玲 侯华 +1 位作者 赵宇宏 杨晓敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期3936-3943,共8页
The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were inves... The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were investigated. The results show that squeeze casting process is an effective method to refine the grain. The composites are mainly composed of α-Mg, β-Mg17Al12 and Mg3Zn6Y icosahedral quasicrystal phase(I-phase). With the increase of applied pressure, the contents of β-Mg17Al12 phase and Mg3Zn6 Y quasicrystal particles increase, further matrix grain refinement occurs and coarse dendritic α-Mg transforms into equiaxed grain structure. The composite exhibits the maximum ultimate tensile strength and elongation of 194.3 MPa and 9.2% respectively when the applied pressure is 100 MPa, and a lot of dimples appear on the tensile fractography. Strengthening mechanisms of quasicrystal-reinforced AZ91 D magnesium matrix composites are chiefly fine-grain strengthening and quasicrystal particles strengthening. 展开更多
关键词 magnesium matrix composite squeeze casting QUASICRYSTAL microstructure mechanical properties
下载PDF
Microstructures and properties of A356-10%SiC particle composite castings at different solidification pressures 被引量:6
15
作者 董普云 赵海东 +1 位作者 陈飞帆 李俊文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2222-2228,共7页
A356-based metal matrix composites with 10% SiC particles of 10 rtm were fabricated by stir casting and direct squeeze casting process under applied pressures of 0.1 (gravity), 25, 50 and 75 MPa. The microstructures... A356-based metal matrix composites with 10% SiC particles of 10 rtm were fabricated by stir casting and direct squeeze casting process under applied pressures of 0.1 (gravity), 25, 50 and 75 MPa. The microstructures and mechanical properties of the as-cast and T6 heat-treated castings were investigated. The results show that as the applied pressures increase, the casting defects as particle-porosity clusters reduce and the incorporation between the particles and matrix can be improved. The tensile strength, hardness, and coefficients of thermal expansion (CTE) increase with the increase of the pressures. Compared with the as-cast composite castings, the tensile strength and hardness of the heat-treated casting are improved whereas CTEs tend to decrease in T6-treated condition. For the gravity cast composites, there are some particle-porosity clusters on the fracture surface, and the clusters are hardly detected on the fracture surface of the samples solidified at the external pressures. Different fracture behaviors are found between the composites solidified at the gravity and imposed pressures. 展开更多
关键词 metal matrix composites squeeze casting microstructureS mechanical properties
下载PDF
Microstructures and mechanical properties of semi-solid squeeze casting ZL104 connecting rod 被引量:10
16
作者 王永飞 赵升吨 张晨阳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第2期235-243,共9页
Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properti... Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properties were investigated. Results showed that the tensile strength and elongation of the SSSC-fabricated rod were improved by 22% and 17%, respectively, compared with those of the LSC-fabricated rod. For SSSC, the average particle size(APS) and the shape factor(SF) increased with the increase of re-melting temperature(Tr), whereas the tensile strength and elongation increased first and then decreased. The APS increased with increasing the mold temperature(Tm), whereas the SF increased initially and then decreased, which caused the tensile strength and elongation to increase initially and then decrease. The APS decreased and the SF increased as squeezing pressure(ps) increased, and the mechanical properties were enhanced. Moreover, the optimal Tr, ps and Tm are 848 K, 100 MPa and 523 K, respectively. 展开更多
关键词 aluminum alloy semi-solid squeeze casting semi-solid microstructure tensile strength ELONGATION connecting rod
下载PDF
Effects of moulding sands and wall thickness on microstructure and mechanical properties of Sr-modified A356 aluminum casting alloy 被引量:10
17
作者 孙少纯 袁博 刘满平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1884-1890,共7页
The effects of different cooling conditions on the mechanical properties and microstructures of a Sr-modified A356 (Al-7Si-0.3Mg) aluminum casting alloy were comparatively investigated using three moulding sands inc... The effects of different cooling conditions on the mechanical properties and microstructures of a Sr-modified A356 (Al-7Si-0.3Mg) aluminum casting alloy were comparatively investigated using three moulding sands including quartz, alumina and chromite into multi-step blocks. The results show that the mechanical properties and microstructures using chromite sand are the best. As the cooling speed increases, the dendrite arm spacing (DAS) decreases significantly and the mechanical properties are improved, and the elongation is more sensitive to the cooling speed as compared with the tensile strength. The increase of the properties is primarily attributed to the decrease of the DAS and the increase of the free strontium atoms in the matrix. In particular, the regression models for predicting both the tensile strength and the elongation for Sr-modified A356 aluminum casting alloy were established based on the experimental data. 展开更多
关键词 A356 aluminum alloy sand casting cooling condition strontium modification microstructure mechanical properties
下载PDF
Microstructure and room temperature mechanical properties of NiAl-Cr(Mo)-(Hf,Dy) hypoeutectic alloy prepared by injection casting 被引量:4
18
作者 盛立远 杨芳 +2 位作者 奚廷斐 郑玉峰 郭建亭 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期983-990,共8页
The NiA1 Cr(Mo) (Hf, Dy) hypoeutectic alloys were prepared by conventional casting and injection casting techniques respectively, and their microstructure and room temperature mechanical properties were investigat... The NiA1 Cr(Mo) (Hf, Dy) hypoeutectic alloys were prepared by conventional casting and injection casting techniques respectively, and their microstructure and room temperature mechanical properties were investigated. The results reveal that with the addition of Hf and Dy, the Ni2AIHf Heusler phase and NisDy phase form along the NiAI/Cr(Mo) phase boundaries in intercellular region. By the injection casting method, some Ni2AIHf Heusler phase and NisDy phase transform into Hf and Dy solid solutions, respectively. Moreover, the microstructure of the alloy gets good optimization, which can be characterized by the fine interlamellar spacing, high proportion of eutectic cell area and homogeneously distributed fine Ni2AIHf, NisDy, Hf solid solution and Dy solid solutions. Compared with conventional-cast alloy, the room temperature mechanical properties of injection-cast alloy are improved obviously. 展开更多
关键词 NiAI based hypoeutectic alloy HF DY injection casting microstructure mechanical properties
下载PDF
Effects of grain refining and modification on mechanical properties and microstructures of Al-7.5Si-4Cu cast alloy 被引量:3
19
作者 刘光磊 司乃潮 +1 位作者 孙少纯 吴勤方 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期946-953,共8页
Al-7.5Si-4Cu cast alloy melt modified by Al-5Ti-B, RE and Al-10Sr master alloys were poured in the chromite sand moulds, to investigate comparatively the effects of individual or combined additions of grain refiners a... Al-7.5Si-4Cu cast alloy melt modified by Al-5Ti-B, RE and Al-10Sr master alloys were poured in the chromite sand moulds, to investigate comparatively the effects of individual or combined additions of grain refiners and modifiers on the mechanical properties, microstructures, grain refining and modification, and intermetallic compounds of the alloy. The results show that the mechanical properties and the microstructures of Al-7.5Si-4Cu cast alloys are improved immensely by combining addition of 0.8%Al-5Ti-B, 0.1%RE and 0.1%Al-10Sr grain refiners and modifiers compared with the individual addition and cast conditions. For individual addition condition, addition of 0.8%Al-5Ti-B master alloy can obtain superior tensile strength, Brinell hardness and finer equiaxedα(Al) dendrites. The alloy with 0.1%RE master alloy shows the highest improvement in ductility because the rare earth can purify the molten metal and change the shape of intermetallic compounds. While the alloy with 0.1%Al-10Sr modifier shows only good improvement in yield strength, and the improvement of other performance is unsatisfactory. The Al-10Sr modifier has a significant metamorphism for the eutectic silicon, but will make the gas content in the aluminum alloy melt increase to form serious columnar grain structures. The effects of grain refining and modification on mean area and aspect ratio have the same conclusions obtained in the mechanical properties and the microstructures analyses. 展开更多
关键词 Al-7.5Si-4Cu cast alloy grain refinement modification treatment mechanical properties microstructureS
下载PDF
Microstructure and mechanical properties of A356 aluminum alloy wheels prepared by thixo-forging combined with a low superheat casting process 被引量:7
20
作者 王顺成 周楠 +1 位作者 戚文军 郑开宏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2214-2219,共6页
The A356 aluminum alloy wheels were prepared by thixo-forging combined with a low superheat casting process. The as-cast microstructure, microstructure evolution during reheating and the mechanical properties of the t... The A356 aluminum alloy wheels were prepared by thixo-forging combined with a low superheat casting process. The as-cast microstructure, microstructure evolution during reheating and the mechanical properties of the thixo-forged A356 aluminum alloy wheels were investigated. The results show that the A356 aluminum alloy billet with fine, uniform and non-dendritic grains can be obtained when the melt is cast at 635 ℃. When the billet is reheated at 600 ℃ for 60 min, the non-dendritic grains are changed into spherical ones and the billet can be easily thixo-forged into wheels. The tensile strength and elongation of thixo-forged wheels with T6 heat treatment are 327.6 MPa and 7.8%, respectively, which are higher than those of a cast wheel. It is suggested that the thixo-forging combined with the low superheat casting process is an effective technique to produce aluminum alloy wheels with high mechanical properties. 展开更多
关键词 aluminum alloy wheel semi-solid metal THIXO-FORGING low-superheat casting
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部