Abstract Transient stress and strain fields of dissimilar titanium alloys (TCll and TC17 ) joint during linear friction welding ( LFW) were investigated by a two-dimensional model with ABAQUS/Explicit. The results...Abstract Transient stress and strain fields of dissimilar titanium alloys (TCll and TC17 ) joint during linear friction welding ( LFW) were investigated by a two-dimensional model with ABAQUS/Explicit. The results showed that in the X-axis, the maximum compressive stress of 850 MPa occurred in the center zone of friction interface , and the maximum tensile stress of 190 MPa distributed at the flash; in the Y-axis, the maximum compressive stress of 1 261 MPa located at the junction region between the welding fixture and edge of the specimen, and the maximum tensile stress of 320 MPa distributed in the connecting portion between the flash and edge of the specimen. In addition, areas of plastic strain increased gradually during welding process. In the X-axis, tensile strain mainly existed at the heads of the specimens; in the Y-axis, compressive strain mainly occurred at the heads of the specimens.展开更多
The effect of heat treatments on laser additive manufacturing(LAM)Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy(TC17)was studied aiming to optimize its microstructure and mechanical properties.The as-deposited sample exhibits...The effect of heat treatments on laser additive manufacturing(LAM)Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy(TC17)was studied aiming to optimize its microstructure and mechanical properties.The as-deposited sample exhibits features of a mixed priorβgrain structure consisting of equiaxed and columnar grains,intragranular ultra-fineαlaths and numerous continuous grain boundaryα(αGB).After being pre-annealed inα+βregion(840°C)and standard solution and aging treated,the continuousαGB becomes coarser and the precipitate free zone(PFZ)nearby theαGB transforms into a zone filled with ultra-fine secondaryα(αS)but no primaryα(αP).When pre-annealed in singleβregion(910°C),allαphases transform intoβphase and the alloying elements distribute uniformly near the grain boundary.DiscontinuousαGB and uniform mixture ofαP andαS near grain boundary form after subsequent solution and aging treatment.The two heat treatments can improve the tensile mechanical properties of LAM TC17to satisfy the aviation standard for TC17.展开更多
Crack initiation is an essential stage of fatigue process due to its direct effect on fatigue failure.However,for titanium alloys in high-temperature high cycle fatigue(HCF),the crack initiation mechanisms remain uncl...Crack initiation is an essential stage of fatigue process due to its direct effect on fatigue failure.However,for titanium alloys in high-temperature high cycle fatigue(HCF),the crack initiation mechanisms remain unclear and the understanding for the defect sensitivity is also lacking.In this study,a series of fatigue tests and multi-scale microstructure characterizations were conducted to explore the high-temperature failure mechanism,and the coupled effect of temperature and defect on TC17 titanium alloy in HCF.It was found that an oxygen-rich layer(ORL)was produced at specimen surface at elevated temperatures,and brittle fracture of ORL at surface played a critical role for surface crack initiation in HCF.Besides,internal crack initiation with nanograins at high temperatures was a novel finding for the titanium alloy.Based on energy dispersive spectroscopy,electron backscatter diffraction and transmission electron microscope characterizations,the competition between surface and internal crack initiations at high temperatures was related to ORL at surface and dislocation resistance in inner microstructure.The fatigue strengths of smooth specimens decreased at elevated temperatures due to the lower dislocation resistance.While the fatigue strengths of the specimens with defect were not very sensitive to the temperatures.Finally,a fatigue strength model considering the coupled effect of temperature and defect was proposed for TC17titanium alloy.展开更多
The effects of grit blasting (GB),shot peening (SP) pretreatment and high velocity oxygen fuel(HVOF) sprayed WC-17Co cermet coating on the fatigue properties of the novel ultra-high strength TC21 titanium alloy were i...The effects of grit blasting (GB),shot peening (SP) pretreatment and high velocity oxygen fuel(HVOF) sprayed WC-17Co cermet coating on the fatigue properties of the novel ultra-high strength TC21 titanium alloy were investigated with a rotating bending fatigue test machine.The basic properties and surface integrity of the coating were investigated by using X-ray diffraction (XRD),surface roughness meter,microscopic hardness tester,scanning electron microscopy (SEM) and X-ray stress test instruments.The results showed that the residual compressive stress could be introduced into the surface of TC21 alloy by GB and SP pretreatment,and that HVOF sprayed WC-17Co coating was compactly bonded with TC21 alloy substrate and it significantly improved the surface hardness of the substrate.However,there was a certain residual tensile stress in the sublayer of the coating.SP could significantly increase fatigue resistance of TC21 alloy due to the surface residual compressive stress.There was no significant effect on fatigue resistance by GB treatment due to the offset between the influence of surface residual compressive stress and the surface notch effect.The fatigue resistance of TC21 alloy was significantly reduced by HVOF WC-17Co coating prepared with GB pretreatment.This could be attributed to the relaxation of surface residual compressive stress during the HVOF heating process,pore defects and residual tensile stress distribution in the WC-17Co coating with low toughness,and the surface notch induced by GB.The fatigue resistance of TC21 alloy was slightly reduced by HVOF WC-17Co coating prepared with SP pretreatment.This was attributed to the offset between the advantage effect by SP and disadvantageous effect of WC-17Co coating and high temperature factor during the HVOF process.展开更多
Using high-resolution transmission Kikuchi diffraction(TKD)and transmission electron microscopy(TEM),we examined the hierarchical clusters that form in situ in the heat-affected zone(HAZ),which are com-monly referred ...Using high-resolution transmission Kikuchi diffraction(TKD)and transmission electron microscopy(TEM),we examined the hierarchical clusters that form in situ in the heat-affected zone(HAZ),which are com-monly referred to as“ghost”structures,of bimodal titanium alloy Ti-5Al-2Sn-2Zr-4Mo-4Cr(wt%,TC17).The ghost structures are enriched with Al elements but poor in Mo and Cr compared to the surroundingβmatrix.TKD results show that the ghost structure in middle-HAZ mainly consists ofα_(L)laths with a high-angle grain boundary,which exhibits the classic Burgers orientation relationship(BOR)with the host matrix,while it encircles theα_(P)grains in far-HAZ.And the ghost structure is evidenced to form via in-complete martensitic transformation.TEM results further confirm that the ghost structure is composed ofαL and tinyβ_(L)laths with BOR,with the former being enriched with Al and poor with Cr and Mo,while the latter is the opposite.Interestingly,twoα_(L)variant clusters with a check-mark morphology are fre-quently observed viewed along[0001]_(αL)//[110]_(βL)directions,which are dominated by the crystallographic and geometrical relationships betweenαandβphases.Based on the microstructural characterization,it is hypothesized that the ghost structure is transformed from the initialα_(P)phase,due to the coupling ef-fect of high thermal stress(which induces the formation of a large number of dislocations)and element diffusion caused by sudden temperature increase and plunge cooling in the HAZ during the welding pro-cess.展开更多
文摘Abstract Transient stress and strain fields of dissimilar titanium alloys (TCll and TC17 ) joint during linear friction welding ( LFW) were investigated by a two-dimensional model with ABAQUS/Explicit. The results showed that in the X-axis, the maximum compressive stress of 850 MPa occurred in the center zone of friction interface , and the maximum tensile stress of 190 MPa distributed at the flash; in the Y-axis, the maximum compressive stress of 1 261 MPa located at the junction region between the welding fixture and edge of the specimen, and the maximum tensile stress of 320 MPa distributed in the connecting portion between the flash and edge of the specimen. In addition, areas of plastic strain increased gradually during welding process. In the X-axis, tensile strain mainly existed at the heads of the specimens; in the Y-axis, compressive strain mainly occurred at the heads of the specimens.
基金Project(BX201600010) supported by the National Postdoctoral Program for Innovative Talents of ChinaProject(2015QNRC001) supported by the Young Elite Scientist Sponsorship Program of China
文摘The effect of heat treatments on laser additive manufacturing(LAM)Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy(TC17)was studied aiming to optimize its microstructure and mechanical properties.The as-deposited sample exhibits features of a mixed priorβgrain structure consisting of equiaxed and columnar grains,intragranular ultra-fineαlaths and numerous continuous grain boundaryα(αGB).After being pre-annealed inα+βregion(840°C)and standard solution and aging treated,the continuousαGB becomes coarser and the precipitate free zone(PFZ)nearby theαGB transforms into a zone filled with ultra-fine secondaryα(αS)but no primaryα(αP).When pre-annealed in singleβregion(910°C),allαphases transform intoβphase and the alloying elements distribute uniformly near the grain boundary.DiscontinuousαGB and uniform mixture ofαP andαS near grain boundary form after subsequent solution and aging treatment.The two heat treatments can improve the tensile mechanical properties of LAM TC17to satisfy the aviation standard for TC17.
基金financially supported by the National Natural Science Foundation of China(No.91860112)the International Postdoctoral Exchange Fellowship Program(China)。
文摘Crack initiation is an essential stage of fatigue process due to its direct effect on fatigue failure.However,for titanium alloys in high-temperature high cycle fatigue(HCF),the crack initiation mechanisms remain unclear and the understanding for the defect sensitivity is also lacking.In this study,a series of fatigue tests and multi-scale microstructure characterizations were conducted to explore the high-temperature failure mechanism,and the coupled effect of temperature and defect on TC17 titanium alloy in HCF.It was found that an oxygen-rich layer(ORL)was produced at specimen surface at elevated temperatures,and brittle fracture of ORL at surface played a critical role for surface crack initiation in HCF.Besides,internal crack initiation with nanograins at high temperatures was a novel finding for the titanium alloy.Based on energy dispersive spectroscopy,electron backscatter diffraction and transmission electron microscope characterizations,the competition between surface and internal crack initiations at high temperatures was related to ORL at surface and dislocation resistance in inner microstructure.The fatigue strengths of smooth specimens decreased at elevated temperatures due to the lower dislocation resistance.While the fatigue strengths of the specimens with defect were not very sensitive to the temperatures.Finally,a fatigue strength model considering the coupled effect of temperature and defect was proposed for TC17titanium alloy.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51171154 and 51101127)
文摘The effects of grit blasting (GB),shot peening (SP) pretreatment and high velocity oxygen fuel(HVOF) sprayed WC-17Co cermet coating on the fatigue properties of the novel ultra-high strength TC21 titanium alloy were investigated with a rotating bending fatigue test machine.The basic properties and surface integrity of the coating were investigated by using X-ray diffraction (XRD),surface roughness meter,microscopic hardness tester,scanning electron microscopy (SEM) and X-ray stress test instruments.The results showed that the residual compressive stress could be introduced into the surface of TC21 alloy by GB and SP pretreatment,and that HVOF sprayed WC-17Co coating was compactly bonded with TC21 alloy substrate and it significantly improved the surface hardness of the substrate.However,there was a certain residual tensile stress in the sublayer of the coating.SP could significantly increase fatigue resistance of TC21 alloy due to the surface residual compressive stress.There was no significant effect on fatigue resistance by GB treatment due to the offset between the influence of surface residual compressive stress and the surface notch effect.The fatigue resistance of TC21 alloy was significantly reduced by HVOF WC-17Co coating prepared with GB pretreatment.This could be attributed to the relaxation of surface residual compressive stress during the HVOF heating process,pore defects and residual tensile stress distribution in the WC-17Co coating with low toughness,and the surface notch induced by GB.The fatigue resistance of TC21 alloy was slightly reduced by HVOF WC-17Co coating prepared with SP pretreatment.This was attributed to the offset between the advantage effect by SP and disadvantageous effect of WC-17Co coating and high temperature factor during the HVOF process.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.51871222 and 52171021)Japan Soci-ety for the Promotion of Science(No.P20737)Natural Science Foundation of Liaoning Province(No.2023-MS-018).
文摘Using high-resolution transmission Kikuchi diffraction(TKD)and transmission electron microscopy(TEM),we examined the hierarchical clusters that form in situ in the heat-affected zone(HAZ),which are com-monly referred to as“ghost”structures,of bimodal titanium alloy Ti-5Al-2Sn-2Zr-4Mo-4Cr(wt%,TC17).The ghost structures are enriched with Al elements but poor in Mo and Cr compared to the surroundingβmatrix.TKD results show that the ghost structure in middle-HAZ mainly consists ofα_(L)laths with a high-angle grain boundary,which exhibits the classic Burgers orientation relationship(BOR)with the host matrix,while it encircles theα_(P)grains in far-HAZ.And the ghost structure is evidenced to form via in-complete martensitic transformation.TEM results further confirm that the ghost structure is composed ofαL and tinyβ_(L)laths with BOR,with the former being enriched with Al and poor with Cr and Mo,while the latter is the opposite.Interestingly,twoα_(L)variant clusters with a check-mark morphology are fre-quently observed viewed along[0001]_(αL)//[110]_(βL)directions,which are dominated by the crystallographic and geometrical relationships betweenαandβphases.Based on the microstructural characterization,it is hypothesized that the ghost structure is transformed from the initialα_(P)phase,due to the coupling ef-fect of high thermal stress(which induces the formation of a large number of dislocations)and element diffusion caused by sudden temperature increase and plunge cooling in the HAZ during the welding pro-cess.